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SELinux: Bring World-Class Security to Any Linux Environment!

 

SELinux offers Linux/UNIX integrators, administrators, and developers a state-of-the-art platform
for building and maintaining highly secure solutions. Now that SELinux is included in the Linux 2.6
kerneland delivered by default in Fedora Core, Red Hat Enterprise Linux, and other major
distributionsit's easier than ever to take advantage of its benefits.

 

SELinux by Example is the first complete, hands-on guide to using SELinux in production
environments. Authored by three leading SELinux researchers and developers, it illuminates every
facet of working with SELinux, from its architecture and security object model to its policy language.
The book thoroughly explains SELinux sample policies including the powerful new Reference
Policyshowing how to quickly adapt them to your unique environment. It also contains a
comprehensive SELinux policy language reference and covers exciting new features in Fedora Core
5 and the upcoming Red Hat Enterprise Linux version 5.

 

• Thoroughly understand SELinux's access control and security mechanisms

• Use SELinux to construct secure systems from the ground up

• Gain fine-grained control over kernel resources

• Write policy statements for type enforcement, roles, users, and constraints

• Use optional multilevel security to enforce information classification and manage users with
diverse clearances

• Create conditional policies that can be changed on-the-fly
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• Define, manage, and maintain SELinux security policies

• Develop and write new SELinux security policy modules

• Leverage emerging SELinux technologies to gain even greater flexibility

• Effectively administer any SELinux system
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Preface
This book is based on our many years of working with, deploying, and helping evolve Security
Enhanced Linux (SELinux). We have also created technical courses on SELinux, and in our teaching
experience we have found that it is difficult to introduce entirely new and foreign notions of computer
security to a new audience. In this book, we think we achieved a good balance between conceptual
overview versus concrete, hands-on examples.

Another challenge with this book is that SELinux is a new technology; although it has been
incorporated into mainstream Linux distributions, it is still evolving. We and others have many
innovative ongoing research and development projects to enhance SELinux in many ways. In this
book, we face the challenge of describing a moving target. Fortunately, the core concepts of SELinux
are fairly well established, and at least the kernel portion of the security enhancements are changing
at a manageable pace. For the newer work, we describe the emerging technologies we believe are
most important.

Audience

This book is primarily aimed at the person who most needs to make use of the security
enhancements that SELinux brings to Linux. As you will see, this person is primarily interested in
understanding, writing, modifying, and/or managing SELinux policies. You are such a person if you
want to use SELinux to enhance the security of your application, system, or network.

To make effective use of this book, you should have a good understanding of Linux/UNIX systems.
The more familiar you are with the interworkings of the Linux kernel and key services, the easier it
will be for you to understand the security object model that SELinux uses. However, as long as you
have good working knowledge of Linux, its conventions, and filesystem layout, and/or its
programming paradigms, you should have no problem with the material of this book.

Users of systems that include SELinux (for example, Red Hat Enterprise Linux, Fedora Core, Gentoo,
and Debian) will also find this book helpful. Although most users and system administrators will not
likely write SELinux policy, understanding the SELinux policy language and security model will give
you greater insights into the power of SELinux to afford you greater security.

What You Will Learn

This book is all about writing SELinux security policies to make effective use of the security
enhancements SELinux brings to Linux. That sounds simple, but in reality, you have to learn new
ideas and understand the SELinux policy language before you can help you understand how to
effectively use these enhancements.

We divide the book into three parts around the learning steps you, as a student of SELinux, will



traverse. The specific topics are as follows:

Part I

Overview of mandatory access control

Type enforcement concepts and applications

SELinux architecture and mechanisms

Part II

Details of the SELinux native policy language syntax and semantics

Object labeling in SELinux

Part III

Two primary methods developed to build SELinux policies: the example policy and the reference
policy

Impacts of SELinux on system administration

How to write policy modules for SELinux

Our goal is to help you understand the details involved in SELinux so that you can create secure
systems. Given the young nature of SELinux, we necessarily provide you with all the gory details of
the low-level policy language. Remember, however, that much work is ongoing to make it easier to
build secure systems without knowing all the low-level details. Where appropriate, we discuss this
evolving work and help you understand how to write secure policies that can pass the scrutiny of
independent review.

Each chapter concludes with a summary of the key points we discuss in the chapter and exercises to
reinforce your understanding of these points. Exercises range from thought experiments, to hands-on
exploration, to modification of real security policies. They all will help enhance your understanding of
SELinux.

Summary of Chapters

We divided this book into three parts, each of which contains several chapters:

Part I, "SELinux Overview." This part provides the background of SELinux evolution and an overview
of its security concepts and architecture.

Chapter 1, "Background." In this chapter, we discuss the evolution of access control in
operating systems, kinds of access control mechanisms, their strengths and weaknesses, and
the kind of access control SELinux brings to Linux.

Chapter 2, "Concepts." In this chapter, we provide a conceptual overview of SELinux security
mechanisms in the form of a detailed tutorial. This chapter is a good, concise discussion of the
security enhancements SELinux brings to Linux.



Chapter 3, "Architecture." In this chapter, we provide an overview of the SELinux architecture
and implementation and an overview of the policy language architecture.

Part II, "SELinux Policy Language." This part contains a detailed description of the entire SELinux
policy language syntax and semantics. Each chapter addresses a portion of the language. This part of
the book can be viewed as a policy language reference.

Chapter 4, "Object Classes and Permissions." In this chapter, we describe how SELinux controls
kernel resources using object classes and defines fine-grained permissions to those object
classes.

Chapter 5, "Type Enforcement Policy." In this chapter, we describe all the core policy language
rules and statements that enable us to write a type enforcement policy. Type enforcement is the
central access control feature of SELinux.

Chapter 6, "Roles and Users." In this chapter, we discuss the SELinux role-based access control
mechanism and how roles and users in the policy language support the type enforcement policy.

Chapter 7, "Constraints." In this chapter, we discuss the constraint feature of the SELinux policy
language, which is a means to provide restrictions within the policy that support the type of
enforcement policy.

Chapter 8, "Multilevel Security." In this chapter, we describe the policy language features that
allow for optional multilevel security access controls in addition to the core type of enforcement
access controls.

Chapter 9, "Conditional Policies." In this chapter, we discuss an enhancement to the policy
language that enables us to make portions of the type enforcement policy conditional on
Boolean expressions whose values can be changed during the course of operation on a
production system.

Chapter 10, "Object Labeling." In this chapter, we finish our discussion of the policy language by
examining how objects are labeled and how we manage those labels in support of SELinux-
enhanced access control.

Part III, "Creating and Writing SELinux Security Policies." In this final part, we show you how to
make use of the policy language, discussing methods for building security policies and insights into
administering an SELinux system and writing and debugging SELinux policy modules.

Chapter 11, "Original Example Policy." In this chapter, we discuss the example policy, which is a
method (source files, build tools and conventions, and so on) for building an SELinux policy that
has evolved over the years from the original example policy released with SELinux by the
National Security Agency. Fedora Core 4 and Red Hat Enterprise Linux come standard with
policies based on the example policy.

Chapter 12, "Reference Policy." In this chapter, we discuss a new method for building an
SELinux policy that provides all the features of the example policy along with support for
emerging SELinux technology. The more recent Fedora Core 5 uses reference policy as its policy
foundation.

Chapter 13, "Managing an SELinux System." In this chapter, we discuss how SELinux impacts
the administration of a Linux system.



Chapter 14, "Writing Policy Modules." In this final chapter, we bring all that you have learned
throughout the book into a guided tour on writing a policy module for both the example and
reference policies.

Appendixes. We have included several appendixes with additional reference material:

Appendix A, "Obtaining SELinux Sample Policies." This appendix provides instructions on how to
obtain the sample policy source files we discuss in this book.

Appendix B, "Participation and Further Information." This chapter lists sources of additional
information on SELinux and describes how you can further participate in the development of
SELinux.

Appendix C, "Object Class Reference." This chapter provides a detailed dictionary of all SELinux
kernel object classes and associated permissions.

Appendix D, "SELinux Commands and Utilities." This chapter provides a summary of utilities and
third-party tools available to help with developing SELinux policies and managing SELinux
systems.

How to Use This Book

Rarely does one read a technical book cover to cover. Most people want to understand a particular
item or begin exploring the technology as soon as possible. Although reading the book cover to cover
is certainly an option, we also recommend an alternative strategy.

Thoroughly read and understand Part I (Chapters 13); this part provides you with the necessary
background and conceptual insights to understand SELinux. In particular, carefully read and study
Chapter 2. You may want to skim Part II (Chapters 410) to get a sense of the content of these
chapters. These chapters are loaded with the details of the SELinux policy language. For most people,
there are too many details to absorb as part of a strategy to first learn about SELinux. As a strategy,
you might want to carefully read Chapter 5 and skim Chapters 4 and 10. These chapters cover the
SELinux policy language elements that are most used by policy writers. Finally, read the chapters of
Part III (Chapters 1114) that address the issues in which you are interested. Use Part II as a
reference as you read these chapters.

Sidebars, Notes, Warnings, and Tips

We make extensive use of sidebars and notes throughout this book to provide additional information
or emphasis on certain items. We also include a number of warnings and tips. Following are the
conventional purposes for each of these within this book:

Sidebars. We use sidebars primarily for two purposes. First, we use them for additional
information that is not directly covered within the main text of the chapter. For example, we use
sidebars to highlight differences between various versions of SELinux or to discuss in detail a
particular concept that might be of interest to the reader. We also use sidebars to document the
complete syntax of all SELinux policy language statements throughout Part II. These syntax
sidebars provide a quick reference for the various policy language elements.



Notes. We use notes to provide additional emphasis on certain points. Usually notes are short
items of additional clarification or detail.

Warnings. Warnings are used much like notes except that they emphasize something that
requires additional caution or strong emphasis.

Tips. Tips provide quick hints and suggestions about how to perform a given function or make
something easier.

Typographical Conventions

All technical books must use some form of typographical convention to better communicate with the
reader. This is especially true due to heavy overloading of terminology, and SELinux is no different.
In general, we use italics to introduce a key concept at the point where we define the concept
(usually first use or near the first use). We also use italics for emphasis. For a particularly strong
point of emphasis, we use a bold font.

Throughout this book, we use a fixed-width font for any SELinux policy language element (allow),
user commands (ps, ls), or anything you would type or see on the computer.

For longer listings that show commands and their output, we use the Bourne shell standard prompts
of # (for root shells) and $ (for ordinary user shells). User input (that is, something that you type) is
also in bold and fix-width fonts in listings. For example:

# ls -lZ /etc/selinux/
-rw-r--r-- root   root     system_u:object_r:selinux_config_t config
drwxr-xr-x root   root     system_u:object_r:selinux_config_t strict
drwxr-xr-x root   root     system_u:object_r:selinux_config_t targeted

When referring to library functions or system calls, we use the convention of including empty
parentheses, such as execve(). We also use this convention for policy macros that take arguments,
such as domain_auto_trans(). When referring you to the Linux manual page for additional
information on a command or function, we use the convention of italics for the command or function
and enclose the manual section within parentheses; for example, make (1), execve (2).

Where to Get SELinux

SELinux is supported in several Linux distributions, including Red Hat Enterprise Linux, Red Hat
Fedora Core, Gentoo, and Debian. Fedora Core has been the central platform around which the
SELinux community has tested and integrated most of its innovations. Red Hat Enterprise Linux,
version 4 (RHEL4), is the first large commercial distribution to fully support a version of SELinux.
Nearly everything we discuss in this book is relevant to RHEL4 and other Linux distributions.

We chose to base this book on Fedora Core 4 (FC4), which is a version of Fedora Core released after
RHEL4. Everything we discuss should work on an FC4 system. During the eight months it took us to
write this book, FC4 evolved, was tested, and released. As we finish this book, Fedora Core 5 (FC5)



was just released. FC5 incorporates many new SELinux innovations, many of which the authors had a
principle role in developing. The new FC5 features are probably a good indicator of what is likely to
show up in RHEL5. As much as practical, throughout this book we note new features and capabilities
available in FC5 and not in FC4. Also, where applicable, we note features in FC4 that are not
supported in the older RHEL4.

If you are an enterprise user or developer, you are likely using RHEL4 or planning to use RHEL5. We
currently use RHEL4 for our enterprise developments and products. If you are an SELinux developer
or early adopter, you are probably using a version of Fedora Core or some other distribution. In all
cases, this book should provide you extensive information about how to use SELinux and develop
SELinux policies.

How to Get the Book's Sample Policies

Throughout this book, we give example pieces of SELinux policies. These examples are based on the
strict Fedora Core 4 policy as distributed by Red Hat. We discuss this policy in more detail in Chapter
11. FC4 comes standard with a targeted (and not strict) policy, so you must go through additional
steps to get the policy upon which our examples are based. In Part III, we broaden our perspective
on sample policies to include other types of policies. We provide instructions in Appendix A on how to
get the sources for all the various sample policies we discuss in this book.
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  Chapter 1 Background page 3

  Chapter 2 Concepts page 15
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Chapter 1. Background
In this chapter

1.1 The Inevitability of Software Failure

1.2 The Evolution of Access Control Security in
Operating Systems

1.3 Summary

Exercises

page 4

page 5
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Security Enhanced Linux (SELinux) is an exciting new technology for securing our computer networks
and systems. In a real sense, it represents the culmination of nearly 40 years of operating system
security research. For the first time, we have a powerful, flexible, mandatory access control
mechanism incorporated into a mainstream, widely distributed operating system. In this chapter, we
provide a brief overview of the history of secure operating system research as a means to motivate
and set into perspective the value that SELinux brings to today's computer security challenges.



1.1. The Inevitability of Software Failure

Appropriately enough, we derive the title of this first section of a book on SELinux from a paper
[1]that the principal creators of SELinux coauthored before the SELinux project was even started. The
authors of that paper pointed out that software is flawed, and that too much of the software being
developed assumes that applications can enforce security without the support of the underlying
operating systems. As they note:

[1] P. Loscocco, S. Smalley, P. Muckelbauer, R. Taylor, S. Turner, J. Farrell. The Inevitability of Failure: The Flawed Assumption

of Security in Modern Computing Environments. In Proceedings of the 21st National Information Systems Security Conference,

pp. 303314, October 1998, available at www.nsa.gov/selinux/papers/inevit-abs.cfm.

The necessity of operating system security to overall system security is undeniable … If it fails to
meet this responsibility, system-wide vulnerabilities will result.

A design that tries to create security without the support of the underlying operating system is a
"fortress built upon sand" [2] with no secure foundation upon which to sit.

[2] D. Baker. Fortresses Built Upon Sand. In Proceedings of the New Security Paradigms Workshop, pp. 148153, 1996.

In the years since that paper was published in 1998, the problem of flawed application software has
become practically an everyday news headline. Rarely does a week go by that some new virus,
computer theft, or system vulnerability is not announced. The fact of life in the computer era is that
application software is flawed and will remain flawed. We certainly applaud the efforts to make
software better and more reliable, but flaws will undoubtedly remain an ongoing problem for the
foreseeable future. Some people will always try to exploit these flaws. Our challenge as a community
is to find ways to have secure systems knowing that flawed application software will always exists.
We cannot meet this challenge successfully without first finding firm ground upon which to build (that
is, the operating system).

Thus we find the goal of SELinux: specifically, to promulgate a better form of operating system
security. As we discuss in this book, the state of the art in operating system security is inadequate.
We as a computer security community have known this for nearly 40 years. We have conducted
much research but have had limited success improving this situation for mainstream operating
systems. Finally, with SELinux, we believe real progress has been made in a way that we will prove
lasting. SELinux is indeed a security enhancement to the Linux operating system. This enhancement
can effectively mitigate the problem of flawed application software, including those flaws not yet
discovered or created. This same enhancement can also enforce many security goals, ranging from
data confidentiality to application integrity to improved robustness.

With SELinux, we have made a great stride toward moving our "fortress" off the shifting sands on
which it currently sits.



1.2. The Evolution of Access Control Security in
Operating Systems

Early operating systems had little or no security; a user could access any file or resource just by
knowing how to name the resource. Fortunately, it was not long before access control mechanisms
began to emerge to provide some sense of security. The predominant type of access control we have
today is called discretionary access control (DAC). The primary feature of DAC is that individual
users, often a resource "owner," can specify who may or may not access the resource. As you will
see, DAC has some fundamental security weaknesses that are intrinsic to its nature. To overcome
these weaknesses, the computer security community has been trying to develop useful mandatory
access control (MAC) mechanisms. MAC is intended to avoid the weaknesses of DAC while providing
the security required. Unfortunately, creating a useful MAC mechanism that is secure yet flexible
enough to address a wide range of problems has proven difficult. The primary value that SELinux
brings to Linux is a flexible, configurable MAC mechanism. In the remainder of this section, we
explore the strengths and weaknesses of various DAC and MAC mechanisms, as a means to provide a
context for understanding the true value that SELinux provides.

1.2.1. The Reference Monitor Concept

To understand access control, you must have an appreciation for the reference monitor concept. The
U.S. Department of Defense led the early research into operating system security in the 1970s and
1980s. A key early report from that work, the so-called Anderson Report, [3] defined for the first time
this fundamental model-for characterizing access control in operating systems (see Figure 1-1).

[3] Anderson, James P. Computer Security Technology Planning Study, Volume II, ESD-TR-73-51, Vol. II, Electronic Systems

Division, Air Force Systems Command, Hanscom Field, Bedford, MA 01730 (Oct. 1972), available at

http://csrc.nist.gov/publications/history/ande72.pdf.

Figure 1-1. The reference monitor concept

http://csrc.nist.gov/publications/history/ande72.pdf


In a reference monitor, the operating system isolates passive resources into distinct objects such as
files and active entities such as running programs into subjects. The reference monitor mechanism
(called a reference validation mechanism) would then validate access between subjects and objects
by applying a security policy as embodied in a set of access control rules. In this manner, program
access to system resources such as files can be limited to those accesses that accord with the
security policy. Access control decisions are based on security attributes associated with each subject
and object that represents the subject's/object's security-related characteristics. For example, in
standard Linux, subjects (that is, processes) have real and effective user identifiers, and objects (for
example, files) have access permission modes that are used to determine whether a process may
open a file.

Other than implementing the security policy, the fundamental design goals of an implementation of
the reference monitor concept are that it be:

Tamper-proof (cannot be maliciously changed or modified)

Nonbypassable (subjects cannot avoid the access control decisions)

Verifiable (it is correct and implementation of the security policy can be demonstrated)

Nearly all operating systems implement some form of a reference monitor and can be characterized
in terms of subjects, objects, and security policy rules. In standard Linux, subjects are generally
processes, and objects are the various system resource used for information sharing, storage, and
communication (files, directories, sockets, shared memory, and so on). In Linux, as in most other
popular operating systems, the security policy rules enforced by the reference monitor (that is, the
kernel) are fixed and hard-coded, whereas the security attributes that these rules use for validation
(for example, access modes) can be changed and assigned. Standard Linux security is a form of DAC
security.

1.2.2. The Problem with Discretionary Access Control

As noted, DAC is a form of access control that usually allows authorized users (via their programs



such as a shell) to change the access control attributes of objects, thereby specifying whether other
users have access to the object. A simple form of DAC might be file passwords, where access to a file
requires the knowledge of a password created by the file owner (and distributed by word of mouth to
other users authorized to view the file). Most DAC mechanisms are based on user-identity access
control attributes. Nearly all modern operating systems have some form of user-identity-based DAC.
In Linux, the owner-group-world permission mode mechanism is prevalent and well known. Likewise,
a more general access control list mechanism is also common.

All DAC mechanisms have a basic weakness in that they fail to recognize a fundamental difference
between human users and computer programs. DAC typically tries to emulate an ownership concept
where; for example, file owners have the right to specify access to files and only give access to other
users they trust to access the file.[4] Assuming that you can trust the human user (arguably an
invalid proposition in general), the way computers work does not directly model the real world.
Simply put, users rely on software, not of their own creation, to perform functions on the computer.
So, we are not really giving users the ability to grant and use access. Instead, we are giving software
programs this capability. As has become obvious in the age of the Internet, programs are often full of
flaws or are downright malicious. This is the problem with Trojan horses, first recognized in the
1970s, of which today's modern viruses, worms, and spyware are just variants. In short, if a user is
authorized access, that really means programs are authorized that access, and if programs are
authorized that access, malicious programs will have that same access.

[4] This is where the word discretion comes from. Owners use their discretion to grant or not grant access.

DAC assumes a benign environment where all programs are trustworthy and without flaws. Although
the early computer research community, which largely lived in an academic world and from which so
much of our current technology evolved, might have wished for such an environment; in reality,
however, we know of no such benign computer environment in the entire history of computer
science. Human nature will always have those who exploit weakness in flawed software.

1.2.3. The Origins of Mandatory Access Control

Throughout the 1970s and 1980s, significant energy was exerted to address the problem of malicious
and flawed software. The goal was to achieve MAC, where the basis of access control decisions was
not at the discretion of individual users or even system administrators. We wanted to implement an
organizational security policy to control access to objects that could not be affected by the actions of
individual programs. The military funded most of this work, which focused on protecting the
confidentiality of classified government data. In particular, the most common MAC mechanisms
implemented to date address the problem of multilevel security, a simplified form of which is shown
in Figure 1-2.

Figure 1-2. Multilevel security model



Multilevel security (MLS) is typically based on a formal model called the Bell-LaPadula model. [5] In
the MLS model, all subjects and objects are labeled with a security level. In our example, we have a
PUBLIC and a SECRET sensitivity level. The levels represent the relative sensitivity of the data and
the clearance of the user on whose behalf the subjects are operating (SECRET being data of "higher"
sensitivity than PUBLIC). In MLS, subjects can always read and write objects at the same sensitivity.
In addition, subjects can read lower-level objects ("read down") and write higher-level objects ("write
up"). However, a subject may never read higher-level objects ("no read up") nor write lower-level
objects ("no write down"). The idea being that information can flow from lower levels to higher levels,
but not the reverse, thereby protecting the confidentiality of the higher-level data.

[5] This model is actually captured in a set of three papers written in 1973 and an interpretation of these papers for the Multics

operating system written in 1976. The Multics interpretation paper is the easiest to read of the set. See David E. Bell and Leonard

J. LaPadula, Secure Computer System: Unified Exposition and MULTICS Interpretation, MTR-2997 Rev. 1, The MITRE

Corporation, Bedford, MA 01730 (Mar. 1976); also ESD-TR-75-306, rev. 1, Electronic Systems Division, Air Force Systems

Command, Hanscom Field, Bedford, MA 01731, available at http://csrc.nist.gov/publications/history/bell76.pdf.

MLS was a radical change in the way we thought about access control. No longer are data owners
arbitrarily determining who may access objects. Further, we could now have strong security
assuming most software was untrusted, because the information flow rules prevent inappropriate
data access. In MLS, the organization decides via fixed rules how data may be shared regardless of
the desires of individual users (and more important, the programs they run). MLS is by far the most
implemented MAC mechanism to date and is still prevalent in several niche operating systems. MAC
mechanisms similar to MLS have also been contemplated and built, all of which share a common
theme of implementing a small number of fixed security properties.

The primary weakness of MLS is the fact that it implements a single security goal (that is, protecting
the confidentiality of sensitive data using the model of government classified documents) in a strict,
inflexible manner. Not all operating system security concerns are related to data confidentiality, and
of those that are, most are not amenable to the rigid and simple model of classified government
documents (including many, if not most, government systems dealing with classified data). To
expand upon this goal in MLS (and similar MAC mechanisms), subjects must be given privilege to
work outside the security policy (that is, violating the principle of nonbypassability) and trusted not to

http://csrc.nist.gov/publications/history/bell76.pdf


violate the intent of the policy. This inflexibility and narrow focus has kept MLS and similar MAC
mechanisms from achieving broad appeal.

1.2.4. A Better Form of Mandatory Access Control

SELinux implements a flexible MAC mechanism called type enforcement (TE). As you will see, type
enforcement provides strong mandatory security in a form that is adaptable to a large variety of
security goals, concurrently. Type enforcement provides a means to control access down to the
individual program level, in a manner that allows an organization to define a security policy
appropriate for their systems. In type enforcement, all subjects and objects have a type identifier
associated with them. To access an object, the subject's type must be authorized for the object's
type, regardless of the user identity of the subject.

What makes the SELinux approach superior to a straight MLS solution is that the rules governing
type-based access control are not predefined nor hard-coded in the kernel. By default, SELinux allows
no access. An organization can develop any number of rules specifying what is allowed, making
SELinux adaptable to a wide variety of security policies.

The collection of rules that determine allowed access for a system is called an SELinux policy.
Physically, an SELinux policy is a special file that contains all the rules that the SELinux kernel will
enforce. The policy file is compiled from a set of source files. As you will see, SELinux policies can
vary from system to system. During the boot process, the policy is loaded into the kernel, where it is
then used as the basis for access control decisions.

Note

The term policy is greatly overloaded in the computer security field. Throughout this
chapter, we use the term to refer to general definitions of an organization security goals
and objectives. However, SELinux also uses policy to refer to the set of rules (and the file
that contains them) that are loaded into the kernel for access enforcement. We try to avoid
confusion by limiting the overloading use of this word (although we cannot completely avoid
this problem). Where its use is ambiguous, we explicitly write SELinux policy to avoid
confusion.

SELinux brings flexible type enforcement along with a form of role-based access control and the
optional addition of traditional MLS to Linux. This flexible and adaptable MAC security, built in to the
mainstream Linux operating system, is what makes SELinux such a promising technology for
improved security.

1.2.5. The Evolution of SELinux

SELinux has its origins in high-assurance operating system security and microkernel research from
the 1980s. These two research threads came together in a project called Distribute Trusted Mach
(DTMach), which merged the experiences of earlier research projects (LOCK, which involved a form



of type enforcement in a high-assurance security kernel; and Trusted Mach, which incorporated
multilevel security controls into the Mach microkernel). The U.S. National Security Agency's research
organization participated in the DTMach effort and continued its participation through a number of
subsequent secure microkernel projects. This work eventually resulted in a new security architecture,
called Flask, that supported a more flexible and dynamic type of enforcement mechanism.[6]

[6] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and J. Lepreau. "The Flask Security Architecture: System

Support for Diverse Security Policies." In Proceedings of the Eighth USENIX Security Symposium, pp. 123139, August 1999.

The various platforms upon which this work was performed were research microkernels not in wide
market use. The NSA recognized a need to expose this technology to a broader community in hopes
of demonstrating its viability and gaining broader support for its use. In the summer of 1999, the
NSA began to implement the Flask security architecture in the Linux kernel. In December 2000, the
NSA made its first public release of this work, called Security Enhanced Linux. Being implemented in
a popular mainstream operating system, SELinux started to attract the attention of the Linux
community. SELinux was originally released as a collection of kernel patches for the 2.2.x kernel.

Following the 2001 Linux Kernel Summit in Ottawa, Canada, the Linux Security Module (LSM) [7]

project was started to create a flexible framework for the Linux kernel that allowed different security
extensions to be added to Linux. The NSA and the SELinux community were major contributors to
this effort, with SELinux helping to drive many of the requirements for LSM. Concurrent with the LSM
effort, NSA started to adapt SELinux to use the LSM framework. The core LSM features were
integrated into the mainline Linux kernel starting in August 2002, and were incorporated into the
Linux 2.6 kernel. By August 2003, the NSA, with growing open source community help, had
completed its migration of SELinux to the LSM framework, resulting in the inclusion of SELinux in the
main Linux 2.6 kernel. SELinux had become a fully functional LSM module included in the core Linux
code set.

[7] See http://lsm.immunix.org.

Several Linux distributions began using the SELinux features in the 2.6 kernel to various degrees, but
the primary effort to make SELinux ready for the enterprise was via the Red Hat-sponsored Fedora
Core project. The NSA and Red Hat started a joint effort to integrate SELinux as part of the
mainstream Fedora Core Linux distribution. Prior to Red Hat's interest, SELinux was always an add-
on set of packages that required significant expertise to integrate. Red Had took the initiative (and
business risks) to make SELinux a part of a mainstream distribution, complete with modified user-
space tools and services and enhanced security enabled by default. Starting with Fedora Core 2 and
continuing with Fedora Core 3, SELinux and its supporting infrastructure and tools were improved for
mainstream use. In early 2005, Red Hat released its Enterprise Linux version 4 (REL4) with SELinux
as a fully enabled by default security enhancement. SELinux and mandatory access control had
reached the mainstream operating system market at last.

SELinux is still a relatively new and complex technology, and significant research and development is
continuing to improve its utility. We discuss much of these emerging developments throughout this
book.

http://lsm.immunix.org


1.3. Summary

Application software is flawed and will remain flawed for the foreseeable future. Nonetheless, we
must find ways to create secure systems despite these inevitable flaws. Real security cannot be
achieved without better underlying operating system security. The goal of SELinux is to provide
this improved security in a mainstream operating system (that is, Linux).

The reference monitor concept is a common means of describing access control in operating
systems. In a reference monitor, resources are encapsulated into distinct objects, and accesses
between subjects (that is, processes) and objects are mediated by the reference validation
mechanism according to the system security policy.

Operating systems have two forms of access control: discretionary access control (DAC) and
mandatory access control (MAC). Standard Linux security is a form of DAC. SELinux adds a
flexible, configurable MAC to Linux.

DAC has a fundamental weakness in that it is subject to a variety of malicious software attacks.
MAC is a way to avoid these weaknesses. Most MAC features implemented so far are a form of
multilevel security modeled after governmental classification controls.

SELinux implements a more flexible form of MAC called type enforcement and an optional form
of multilevel security.



Exercises

1. Set up an SELinux system and install the strict example policy using the instructions in
Appendix A, "Obtaining SELinux Sample Policies."
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The details of the SELinux access control mechanism and policy language are extensive and fully
described in later chapters. However, the basic concepts and goals of SELinux are fairly simple. In
this chapter, we examine the security concepts of SELinux and the motivations behind these
concepts. Gaining a conceptual understanding is necessary to effectively use and apply SELinux
access controls. This chapter focuses on the primary access control feature of SELinux, type
enforcement (TE), although we also briefly discuss the optional multilevel security mechanism.



2.1. Security Contexts for Type Enforcement

All operating system access control is based on some type of access control attribute associated with
objects and subjects. In SELinux, the access control attribute is called a security context. All objects
(files, interprocess communication channels, sockets, network hosts, and so on) and subjects
(processes) have a single security context associated with them. A security context has three
elements: user, role, and type identifiers. The usual format for specifying or displaying a security
context is as follows:

       user:role:type

The string identifiers for each element are defined in the SELinux policy language, which we discuss in
greater detail later. For now, just understand that a valid security context must have one valid user,
role, and type identifier, and that the identifiers are defined by the policy writer. The namespaces for
each identifier are orthogonal. (So, for example, it is possible, but not usually advisable, to have the
same string identifier for a user, a role, and a type.)

Examining Security Contexts

SELinux modifies many system commands by adding the -Z option to display the security
contexts of objects and subjects. For example, ls -Z shows the security contexts of file
system objects and ps -Z shows the security contexts of processes. Another useful
command is id, which shows the security context of your shell (that is, your current
user, role, and type). The following, for example, shows the security context of a shell on
a running SELinux system:

$ id -Z
joe:user_r:user_t

You can use these commands to explore your own SELinux system as we walk through
the examples in this chapter.

2.1.1. Comparing SELinux with Standard Linux

At this point, it is useful to compare the access control attributes on standard Linux with those of
SELinux. For simplicity, we stick to common filesystem objects such as files and directories. In
standard Linux, the access control attributes of subjects are the real and effective user and group IDs
associated with all processes via the process structure in the kernel. These attributes are protected
by the kernel and set via a number of controlled means, including the login process and setuid



programs. For objects (for example, files), the inode of the file contains a set of access mode bits and
file user and group IDs. The former controls access based on three sets of read/write/execute bits,
one each for file owner, file group, and everyone else. The latter determines the file owner and group
to decide which set of bits to use on a given access attempt.

As noted, in SELinux, the access control attributes are always the security context triple. All objects
and subjects have an associated security context. Where standard Linux uses the process user/group
IDs, the file's access mode, and the file user/group IDs to grant or deny access, SELinux uses the
security contexts of a process and the object the process accesses. More specifically, because the
primary access control feature of SELinux is type enforcement, the type identifier from the security
context is used to determine access.

Note

SELinux adds type enforcement to standard Linux. This means that both the standard Linux
and enhanced SELinux access controls must be satisfied to access an object. So, for
example, if we have SELinux write access to a file but we do not have w permission on the
file, we cannot write the file.

Table 2-1 summarizes the comparison of standard Linux and the added SELinux security attributes
and access control.

Table 2-1. Comparison of Standard Linux and Security-Enhanced Linux
Access Control

  Standard Linux SELinux Added

Process security attributes Real and effective user and
group IDs

Security context

Object security attributes Access modes and file user
and group IDs

Security context

Basis for access control Process user/group ID and
file's access modes based on
file's user/ group ID

Permissions allowed
between process type and
file type

2.1.2. More on Security Contexts

The security context is a simple, consistent access control attribute. In SELinux, the type identifier is
the primary part of the security context that determines access. For historical reasons, the type of a
process is often called a domain. The use of "domain" and "domain type" to mean the type of a
process is so common and pervasive that we do not attempt to avoid using the term domain. In



general, consider domain, domain type, subject type, and process type to be synonymous.

The user and role identifiers in a security context have little impact in the access control policy for
type enforcement except for constraint enforcement, which we discuss in Chapter 7, "Constraints."
For processes, user and role identifiers are more interesting because they are used to control the
association of types with user identifiers and thus with Linux user accounts (more on this later). For
objects, however, user and role identifiers have nearly no use. As a convention, the role of an object
is usually object_r, and the user of an object is usually the user identifier of the process that created
the object. They have no effect on access control.

Finally, be aware of the differences between the user ID in standard Linux security and the user
identifier in a security context. Technically, these are completely orthogonal identifiers, used
separately by the standard and security-enhanced access control mechanisms, respectively. Any
relationship between these two is strictly provided via the login process according to conventions not
directly enforced by the SELinux policy.



2.2. Type Enforcement Access Control

In SELinux, all access must be explicitly granted. SELinux allows no access by default, regardless of
the Linux user/group IDs. Yes, this means that there is no default superuser in SELinux, unlike root in
standard Linux. The way access is granted is by specifying access from a subject type (that is, a
domain) and an object type using an allow rule. An allow rule has four elements:

Source type(s) Usually the domain type of a process attempting access

Target type(s) The type of an object being accessed by the process

Object class(es) The class of object that the specified access is permitted

Permission(s) The kind of access that the source type is allowed to the target type for the
indicated object classes

As an example, take the following rule:

allow user_t bin_t : file {read execute getattr};

This example shows the basic syntax of a TE allow rule. This rule has two type identifiers: the source
(or subject or domain) type, user_t; and the target (or object) type, bin_t. The identifier file is the
name of an object class defined in the policy (in this case, representing an ordinary file). The
permissions contained within the braces are a subset of the permissions valid for an instance of the
file object class. The translation of this rule would be as follows:

A process with a domain type of user_t can read, execute, or get attributes for a file object with
a type of bin_t.

As we discuss later, permissions in SELinux are substantially more granular than in standard Linux,
where there are only three (rwx). In this case, read and execute are fairly conventional; getattr is
less obvious. Essentially, getattr permission to a file allows a caller to view (not change) attributes
such as date, time, and discretionary access control (DAC) access modes. In a standard Linux
system, a caller may view such information on a file with only search permission to the file's directory
even if the caller does not have read access to the file.

Assuming that user_t is the domain type of an ordinary, unprivileged user process such as a login
shell process, and bin_t is the type associated with executable files that users run with the typical
security privileges (for example, /bin/bash), the rule might be in a policy to allow users to execute
shell programs such as the bash shell.

Note



There is no significance to the _t in the type identifier name. This is just a naming
convention used in most SELinux policies; a policy writer can define a type identifier using
any convenient convention allowed by the policy language syntax.

Throughout this chapter, we often depict allowed access using symbols: circles for processes, boxes
for objects, and arrows representing allowed access. For example, Figure 2-1 depicts the access
allowed by the previous allow rule.

Figure 2-1. A depiction of an allow rule

2.2.1. Type Enforcement by Example

SELinux allow rules such as the preceding example are really all there is to granting access in
SELinux. The challenge is determining the many thousands of accesses one must create to permit the
system to work while ensuring that only the necessary permissions are granted, to make it as secure
as possible.

To further explore type enforcement, let's use the example of the password management program
(that is, passwd). In Linux, the password program is trusted to read and modify the shadow password
file (/etc/shadow) where encrypted passwords are stored. The password program implements its own
internal security policy that allows ordinary users to change only their own password while allowing
root to change any password. To perform this trusted job, the password program needs the ability to
move and re-create the shadow file. In standard Linux, it has this privilege because the password
program executable file has the setuid bit set so that when it is executed by anyone, it runs as root
user (which has all access to all files). However, many, many programs can run as root (in reality, all
programs can potentially run as root). This means, any program (when running as root) has the
potential to modify the shadow password file. What type enforcement enables us to do is to ensure
that only the password program (or similar trusted programs) can access the shadow file, regardless
of the user running the program.

Figure 2-2 depicts how the password program might work in an SELinux system using type
enforcement.



Figure 2-2. Type enforcement example: passwd program

In this example, we defined two types. The passwd_t type is a domain type intended for use by the
password program. The shadow_t type is the type for the shadow password file. If we examine such a
file on disk, we would see something like this:

# ls -Z /etc/shadow
-r----  root   root  system_u:object_r:shadow_t  shadow

Likewise, examining a process running the password program under this policy would yield this:

# ps -aZ
joe:user_r:passwd_t   16532 pts/0    00:00:00 passwd

For now, you can ignore the user and role elements of the security context and just note the types.

Examine the allow rule in Figure 2-2 The purpose of this rule is to give the passwd process' domain
type (passwd_t) the access to the shadow's file type (shadow_t) needed to allow the process to move
and create a new shadow password file. So, in reexamining Figure 2-2, we see that the depicted
process running the password program (passwd) can successfully manage the shadow password file
because it has an effective user ID of root (standard Linux access control) and because a TE allow
rule permits it adequate access to the shadow password file's type (SELinux access control). Both are
necessary, neither is sufficient.

2.2.2. The Problem of Domain Transitions



If all we had to do was provide allowed access for processes to objects such as files, writing a TE
policy would be straightforward. However, we have to figure out a way to securely run the right
programs in a process with the right domain type. For example, we do not want programs not
trusted to access the shadow file to somehow execute in a process with the passwd_t domain type.
This could be disastrous. This problem brings us to the issue of domain transitions.

To illustrate, examine Figure 2-3, in which we expand upon the previous password program example.
In a typical system, a user (say Joe) logs in, and through the magic of the login process, a shell
process is created (for example, running bash). In standard Linux security, the real and effective user
IDs (that is, joe) are the same. [1] In our example SELinux policy, we see that the process type is
user_t, which is intended to be the domain type of ordinary, untrusted user processes. As Joe's shell
runs other programs, the type of the new processes created on Joe's behalf will keep the user_t
domain type unless some other action is taken. So how does Joe change passwords?

[1] To be precise, Joe would not be a user ID. Rather, the string joe is used to determine the user ID (which is an integer number)

from the password file (/etc/passwd). For ease of explanation, we skip that intermediate step and just use the string identifiers in

our examples.

Figure 2-3. The problem of domain transitions
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We would not want Joe's untrusted domain type user_t to have the capability to read and write the
shadow password file directly because this would allow any program (including Joe's shell) to see and
change the contents of this critical file. As discussed previously, we want only the password program
to have this access, and then only when running with the passwd_t domain type. So, the question is
how to provide a safe, secure, and unobtrusive method for transitioning from Joe's shell running with
the user_t type to a process running the password program with the passwd_t type.

2.2.3. Review of SetUID Programs in Standard Linux Security

Before we discuss how to deal with the problem of domain transitions, let's first review how a similar
problem is handled in standard Linux where the same problem of providing Joe a means to securely
change his password exists. The way Linux solves this problem is by making passwd a setuid to the
root program. If you list the password program file on a typical Linux system, you see something like



this:

# ls -l /usr/bin/passwd
-r-sxx  1 root root 19336 Sep  7 04:11 /usr/bin/passwd

Notice two things about this listing. First the s in the x spot for the owner permission. This is the so-
called setuid bit and means that for any process that executes this file, its effective UID (that is, the
user ID used for access control decisions) will be changed to that of the file owner. In this case, root
is the file owner, and therefore when executed the password program will always run with the
effective user ID of root. Figure 2-4 shows these steps.

Figure 2-4. Password program security in standard Linux (setuid)

[View full size image]

What actually happens when Joe runs the password program is that his shell will make a fork()
system call to create a near duplicate of itself. This duplicate process still has the same real and
effective user IDs (joe) and is still running the shell program (bash). However, immediately after
forking, the new process will make an execve() system call to execute the password program.
Standard Linux security requires that the calling user ID (still joe) have x access, which in this case is
true because of the x access to everyone. Two key things happen as a result of the successful
execve() call. First, the shell program running in the new process is replaced by the password
program (passwd). Second, because the setuid bit is set for owner, the effective user ID is changed
from the process' original ID to the file owner ID (root in this case). Because root can access all files,
the password program can now access the shadow password file and handle the request from Joe to
change his password.

Use of the setuid bit is well established in UNIX-like operating systems and is a simple and powerful



feature. However, it also illustrates the primary weakness of standard Linux security. The password
program needs to run as root to access the shadow file. However, when running as root, the
password program can effectively access any system resource. This is a violation of the central
security engineering principal of least privilege. As a result, we must trust the password program to
be benign with respect to all other possible actions on the system. For truly secure applications, the
password program requires an extensive code audit to ensure it does not abuse its extra privilege.
Further, when the inevitable unforeseen error makes its way into the password program, it presents
a possible opportunity to introduce vulnerabilities beyond accessing the shadow password file.
Although the password program is fairly simple and highly trusted, think of the other programs
(including login shells) that may and do run as root with that power.

What we would really like is a way to ensure least privilege for the password program and any other
program that must have some privilege. In simple terms, we want the password program to be able
to access only the shadow and other password-related files plus those bare-minimum system
resources necessary to run; and we would like to ensure that no other program but the password
(and similar) programs can access the shadow password file. In this way, we need only evaluate the
password (and similar) programs with respect to its role in managing user accounts and need not
concern ourselves with other programs when evaluating security concerns for user account
management.

This is where type enforcement comes in.

2.2.4. Domain Transitions

As previously shown in Figure 2-2, the allow rule that would ensure that passwd process domain type
(passwd_t) can access the shadow password file. However, we still have the problem of domain
transitions described earlier. Providing for secure domain transition is analogous to the concept of
setuid programs, but with the strength of type enforcement. To illustrate, let's take the setuid
example and add type enforcement (see Figure 2-5).

Figure 2-5. Passwd program security in SELinux (domain transitions)

[View full size image]



Now our example is more complicated. Let's examine this figure in detail. First notice that we have
added the three types we showed previously, namely Joe's shell domain (user_t), the password
program's domain type (passwd_t), and the shadow password file type (shadow_t). In addition, we
have added the file type for the passwd executable file (passwd_exec_t). For example, listing the
security context for the password program on-disk executable would yield a result something like
this:

# ls -Z /usr/bin/passwd
-r-sxx  root  root  system_u:object_r:passwd_exec_t  /usr/bin/passwd

Now we have enough information to create the TE policy rules that allow the password program (and
presumably only the password program) to run with the passwd_t domain type. Let's look at the rules
from Figure 2-5. The first rule is as follows:

allow user_t passwd_exec_t : file {getattr execute};

What this rule does is allow Joe's shell (user_t) to initiate an execve() system call on the passwd
executable file (passwd_exec_t). The SELinux execute file permission is essentially the same
permission as x access for files in standard Linux. (The shell "stats" the file before trying to execute,
hence the need for getattr permission, too.) Recall our description of how a shell program actually
works. First it forks a copy of itself, including identical security attributes. This copy still retains Joe's
shell original domain type (user_t). Therefore, the execute permission must be for the original
domain (that is, the shell's domain type). That is why user_t is the source type for this rule.

Let's now look at the next allow rules from Figure 2-5:

allow passwd_t passwd_exec_t : file entrypoint;

This rule provides entrypoint access to the passwd_t domain. The entrypoint permission is a rather



valuable permission in SELinux. What this permission does is define which executable files (and
therefore which programs) may "enter" a domain. For a domain transition, the new or "to-be-
entered" domain (in this case, passwd_t) must have entrypoint access to the executable file used to
transition to the new domain type. In this case, assuming that only the passwd executable file is
labeled with passwd_exec_t, and that only type passwd_t has entrypoint permission to
passwd_exec_t, we have the situation that only the password program can run in the passwd_t
domain type. This is a powerful security control.

Warning

The concept of entrypoint permission is extremely important. If you did not fully
understand the preceding example, please re-read it again before proceeding.

Let's now look at the final rule:

allow user_t passwd_t : process transition;

This is the first allow rule we have seen that did not provide access to file objects. In this case, the
object class is process, meaning the object class representing processes. Recall that all system
resources are encapsulated in an object class. This concept holds for processes, too. In this final rule,
the permission is TRansition access. This permission is needed to allow the type of a process'
security context to change. The original type (user_t) must have TRansition permission to the new
type (passwd_t) for the domain transition to be allowed.

These three rules together provide the necessary access for a domain transition to occur. For a
domain transition to succeed, all three rules are necessary; alone, none is sufficient. Therefore, a
domain transition is allowed only when the following three conditions are true:

1. The process' new domain type has enTRypoint access to an executable file type.1.

2. The process' current (or old) domain type has execute access to the entry point file type.2.

3. The process' current domain type has transition access to the new domain type.3.

When all three of these permissions are permitted in a TE policy, a domain transition may occur.
Further, with the use of the entrypoint permission on executable files, we have the power to strictly
control which programs can run with a given domain type. The execve() system call is the only way
to change a domain type, [2] giving the policy writer great control over an individual program's
access to privilege, regardless of the user who may be invoking the program.

[2] To be precise, a recent change to SELinux provides a means for a process, with necessary privilege, to change its security

context without an execve() call. In general, without strong justification, this mechanism, described in Chapter 5, "Type

Enforcement," should not be used because it greatly weakens the strength of type enforcement.

Now the issue is how does Joe indicate that he wants a domain transition to occur. The above rules
allow only the domain transition; they do not require it. There are ways that a programmer or user



can explicitly request a domain transition (if allowed), but in general we do not want users to have to
make these requests explicitly. All Joe wants to do is run the password program, and he expects the
system to ensure that he can. We need a way to have the system initiate a domain transition by
default.

2.2.5. Default Domain Transitions: type_transition Statement

To support domain transitions occurring by default (as we want in the case of the password
program), we need to introduce a new rule, the type transition rule (type_transition). This rule
provides a means for the SELinux policy to specify default transitions that should be attempted if an
explicit transition was not requested. Let's add the following type transition rule to the allow rules:

type_transition user_t passwd_exec_t : process passwd_t;

The syntax of this rule differs from the allow rule. There are still source and target types (user_t and
passwd_exec_t, respectively) and an object class (process). However, instead of permissions, we
have a third type, the default type (passwd_t).

Type_transition rules are used for multiple different purposes relating to default type changes. For
now, we are concerned with a type_transition rule that has process as its object class. Such rules
cause a default domain transition to be attempted. The type_transition rule indicates that, by
default on an execve() system call, if the calling process' domain type is user_t and the executable
file's type is passwd_exec_t (as is the case in our example in Figure 2-5), a domain transition to a
new domain type (passwd_t) will be attempted.

The type_transition rule allows the policy writer to cause default domain transitions to be initiated
without explicit user input. This makes type enforcement less obtrusive to the user. In our example,
Joe does not want to know anything about access control or types; he wants only to change his
password. The system and policy designer can use type_transition rules to make these transitions
transparent to the user.

Note

Remember that a type_transition rule causes a domain transition to be attempted by
default, but it does not allow it. You must still provide the three types of access required for
a domain transition to successfully occur, whether it was initiated by default or as a result
of the user's explicit request.



2.3. The Role of Roles

SELinux also provides a form of role-based access control (RBAC). The RBAC feature of SELinux is
built upon type enforcement; access control in SELinux is primarily via type enforcement. Roles limit
the types to which a process may transition based on the role identifier in the process' security
context. In this manner, a policy writer can create a role that is allowed to transition into a set of
domain types (assuming the type enforcement rules allow the transition), thereby defining the limits
of the role. Take our password program example in Figure 2-5. Although according to the type
enforcement rules, the password program can be executed by the user_t domain type to enter the
new passwd_t domain, Joe's role must also be allowed to be associated with the new domain type for
the transition to occur. To illustrate, we extend the password program example in Figure 2-6.

Figure 2-6. Roles in domain transitions
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We have added the role portion (user_r) of the security contexts for the processes depicted. We also
added a new rule, specifically the role statement:

role user_r type passwd_t;

The role statement declares role identifiers and associates types with the declared role. The previous



statement declares the role user_r (if it has not already been declared in the policy) and associates
the type passwd_t with the role. What this association means is that the passwd_t type is allowed to
coexist in a security context with the role user_r. Without this role statement, the new context
joe:user_r:passwd_t could not be created, and the execve() system call would fail, even though the
TE policy allows Joe's type (user_t) all the necessary access.

A policy writer can define roles that are further constrained and then associate these roles to specific
users. For example, imagine that in our policy we also create a role called restricted_user_r,
identical to user_r in all regards except that it is not associated with the passwd_t type. Thus, if Joe's
role is restricted_user_r instead of user_r, Joe would not be authorized to run the password
program even though the TE rules would allow his domain type the access.

Chapter 6, "Roles and Users," discusses in detail the purposes of roles in SELinux and in particular
how they are created and associated with users.



2.4. Multilevel Security in SELinux

Type enforcement is far and away the most important mandatory access control (MAC) mechanism
that SELinux introduces. However, in some situations, primarily for a subset of classified government
applications, traditional multilevel security (MLS) MAC coupled with type enforcement is valuable. In
recognition of these situations, SELinux has always had some form of MLS capability included. The
MLS features are optional and generally the less important of the two MAC mechanisms in SELinux.
For the vast majority of security applications, including many if not most classified data applications,
type enforcement is the best-suited mechanism for enhanced security. Nonetheless, the addition of
MLS enhances security for some applications.

The basic concept of MLS was introduced in Chapter 1, "Background;" actual implementations of MLS
are more involved. The security level used by MLS systems is a combination of a hierarchical
sensitivity and a set (including the null set) of nonhierarchical categories. These sensitivities and
categories are used to reflect real information confidentiality or user clearances. In most SELinux
policies, the sensitivities (s0, s1, ...) and categories (c0, c1, ...) are given generic names, leaving it to
userspace programs and libraries to assign user-meaningful names. (For example, s0 might be
associated with UNCLASSIFIED and s1 with SECRET.)

To support MLS, the security context is extended to include security levels as such these:

user:role:type:sensitivity[:category,...][-sensitivity[:category,...]]

Notice that the MLS security context must have at least one security level (which is composed of a
single sensitivity and zero or more categories), but can include two security levels. These two
security levels are called low (or current for processes) and high (or clearance for processes),
respectively. If the high security level is missing, it is considered to be the same value as the low (the
most common situation). In practice, the low and high security levels are usually the same for most
objects and processes. A range of levels is typically used for processes that are considered trusted
subjects (that is, a process trusted with the ability to downgrade information) or multilevel objects
such as directories that might contain objects of differing security levels. For purposes of this
overview, assume that all processes and objects have a single security level.

The MLS rules for accessing objects are much the same as discussed in Chapter 1, except that
security levels are not hierarchical but rather governed by a dominance relationship. Unlike equality
where a level is either higher than, equal to, or lower than another level, in a dominance relationship,
there is a fourth state called incomparable (also known as noncomparable; see the definition of
incomp in the following list). What causes security levels to be related via dominance rather than
equality are the categories, which have no hierarchical relationship to one another. As a result, the
four dominance operators that can relate two MLS security levels are as follows:

dom: (dominates) SL1 dom SL2 if the sensitivity of SL1 is higher or equal
to the sensitivity of SL2, and the categories of SL1 are a superset of
the categories of SL2.



domby: (dominated by) SL1 domby SL2 if the sensitivity of SL1 is lower than
or equal to the sensitivity of SL2, and the categories of SL1 are a
subset of the categories of SL2.

eq: (equals) SL1 eq SL2 if the sensitivity of SL1 and SL2 are equal, and
the categories of SL1 and SL2 are the same set.

incomp: (incomparable or noncomparable) SL1 incomp SL2 if the categories
of SL1 and SL2 cannot be compared (that is, neither is a subset of
the other).

Given the domain relationship, a variation of the Bell-La Padula model is implemented in SELinux
where a process can "read" an object if its current security level dominates the security level of the
object, and "write" an object if its current security level is dominated by the security level of the
object (and therefore read and write the object only if the two security levels are equal).

The MLS constraints in SELinux are in addition to the TE rules. If MLS is enabled, both checks must
pass (in addition to standard Linux access control) for access to be granted. Chapter 8, "Multilevel
Security," discusses the SELinux optional MLS features.
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2.5. SELinux Features Familiarization

At this time, it is worthwhile to play with an SELinux system a little. For our examples, we use a
Fedora Core 4 (FC4) distribution with the strict policy. Most of these examples should also work on
Red Hat Enterprise Linux version 4 (RHEL4) or Fedora Core 5 (FC5). You might also be able to work
with other distributions, although there may be differences. Appendix A, "Obtaining SELinux Sample
Policies," describes how to obtain the policy files and other materials we use as examples throughout
this book and how to configure your system accordingly.

Running in Permissive Mode

SELinux can run in permissive mode, where the access checks occur; but instead of
denying unallowed access, it simply audits them. This mode is useful when first learning
about SELinux, and you may want to start exploring the system in this mode. Of course,
permissive mode should not be used in operational systems if you want the enhanced
access security of SELinux. Note that some utilities are found in /usr/sbin, which is not
normally in a regular user's path.

The simplest way to check the current mode of SELinux is to run the getenforce
command. To set the system in permissive mode, run the command setenforce 0. (You
must be logged in as root in the sysadm_t domain to change the system to permissive
mode.) To return it to enforcing mode, run the command setenforce 1. (Because you
are in permissive mode, you just need to be logged in as root to change the system to
enforcing mode.)

We have already mentioned the -Z option added to some system commands. Commands
such as ls and ps display the security contexts of files and processes. As an exercise, run
the commands ps xZ and ls -Z /bin and examine the various security contexts for
running processes and executable files.

2.5.1. Revisiting the Passwd Example

Throughout this chapter, we used the example of the shadow password file and the password
program. If you examine the security context of these two files, their types should be shadow_t and
passwd_exec_t, respectively. As discussed previously, passwd_exec_t is the entrypoint type for the
passwd_t domain. To witness how the process of domain transitions work, walk through the following
set of commands. You need two terminal windows or virtual consoles to do this walkthrough.

In the first window, run the passwd command:

$ passwd



Changing password for user joe.
Changing password for joe
(current) UNIX password:

This starts the password program and prompts for the user's current password. Do not enter the
password, but instead switch to the second terminal. In the second terminal, su to root and then run
the ps command:

$ su
Password:
Your default context is root:sysadm_r:sysadm_t.

Do you want to choose a different one? [n]
# ps axZ|grep passwd
user_u:user_r:passwd_t           4299 pts/1    S+     0:00 passwd

As you can see, the type of the running password program is passwd_t, as we would expect given the
rules described in the examples earlier in this chapter.

Note

In a strict policy such as the one we use for our examples, a normal user (that is, a user
running a shell in the user_t domain) does not have permission to read many /proc/pid
entries, and as such the passwd process would not show up in the ps axZ output. That is
why you need to su to root first.

2.5.2. Perusing the Policy File

In FC4 systems, the binary file containing the kernel policy is located in the well-known directory
/etc/selinux/. The configuration file (config) in that directory indicates the policy to be used and
loaded on boot. You can also configure the system to boot in permissive mode in this file. For our
exercises, we are using FC4's strict policy, which (if installed according to Appendix A) should be
here:

/etc/selinux/strict/policy/policy.[ver]

The version of the policy reflects the version of the SELinux policy compiler (checkpolicy). In our
example, the version is 19. Configuring an SELinux system and creating a kernel policy file from
policy sources are discussed in greater detail in Part III, "Creating and Writing SELinux Security
Policies." For now, we want to look around inside the policy to see what is there.

A useful tool for examining the contents of a policy is the policy analysis tool apol created by Tresys
Technology and distributed in a package of SELinux tools called SeTools (see Appendix D, "SELinux



Commands and Utilities"). The SeTools package is included on most SELinux distributions. Run the
command apol to determine whether the tool is present on your system. If not, Appendix D provides
information on how to obtain the SeTools package.

The apol (for "analyze policy") tool is a sophisticated SELinux policy analysis tool that we use
throughout the book to examine SELinux policies. For now, we want to use some of its basic features
to examine aspects of the policy file. Run apol and open the strict policy file. Under the menu Query
> Policy Summary, you can view a summary of the policy statistics (see Figure 2-7).

Figure 2-7. Policy summary using apol
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Apol has a series of major tabs (Policy Components, Policy Rules, Analysis, and so on) that enable
you to search and analyze a policy in various ways. Take some time to explore the Policy
Components and Policy Rules tabs and become familiar with both portions of the policy we discussed
in this chapter and the apol tool itself. You will find it useful throughout Part II, "SELinux Policy
Language," to use apol to examine your policy and follow along with the examples.



2.6. Summary

SELinux access control is based on a security context associated with all system resources
including processes. The security context contains three elements: user, role, and type
identifiers. The type identifier is the primary basis for access control.

In SELinux, type enforcement is the primary access control feature. Access is granted between
subjects (that is, processes) and objects by specifying allow rules that have the subject's type
(also called a domain type) as the source and the object's type as the target. Access is granted
for specified object classes using a fine-grained set of permissions defined for each object class.

One of the key benefits of type enforcement is the ability to control which programs may run
with a given domain type, thereby allowing access control down to individual programs (rather
than the less-secure level of a user). The capability for a program to enter into a domain (that
is, run with a given process type) is called domain transition and is tightly controlled by SELinux
allow rules. SELinux also allows domain transitions to occur automatically through the
type_transition rule.

SELinux does not directly use the role identifiers in a security context for access control.
Instead, all access is controlled based on types. Roles are used to associate the allowed domain
types into which a process running on behalf of a user may transition. This allows sets of type
enforcement allowed capabilities to be grouped together and authorized for a user as a role.

SELinux provides an optional MLS access control mechanism that provides further access
restrictions for a certain class of data sensitivity applications. The MLS features are built upon
the TE mechanism. MLS also extends the security context to include a current (or low) security
level and an optional high (or clearance) security level.



Exercises

1. What is a "domain" and how is it related to or different from a type?

2. What are the access control attributes used by SELinux type enforcement security to
control access? What portion of the attribute is used by type enforcement for access
control?

3. Let's assume that we have a file named datafile with the following security attributes:

-r-xr-xr-x root root system_u:object_r:data_t datafile

Let's also assume that your shell process type is user_t and that type has all access
permissions for file objects of type data_t. Can you read and/or write this file? Why or
why not?

4. For SELinux to allow a domain transition, a number of access permissions must be
allowed among three types. What are the access permissions required and between what
types? What do the types represent?

5. In answering Question 4, was a type_transition rule required? Why or why not?

6. In SELinux, a role is not used as a basis for access control, but it can prevent a domain
transition from succeeding. How and why?

Extra credit: Examine the SELinux configuration file /etc/selinux/config. What are the possible
states in which SELinux can run and what do each mean? How do the settings in this file differ from
using the setenforce command?
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This chapter provides an overview of the SELinux design and its policy language. The SELinux
architecture reflects its origins in secure microkernel research. It integrates itself into the kernel
using the Linux Security Module (LSM) framework. This architecture is also extensible into user-space
servers. The SELinux policy language is flexible, allowing an organization to implement a variety of
security goals via mandatory access controls.



3.1. The Kernel Architecture

SELinux provides enhanced access control over all kernel resources. In its current form, SELinux is
incorporated into the kernel via the LSM framework.

3.1.1. LSM Framework

The idea behind the LSM framework is to allow security modules to plug into the kernel that can
further restrict the default Linux identity-based discretionary access control (DAC) security. LSM
provides a set of hooks in the kernel system call logic. These hooks are usually placed after the
standard Linux access checks but before the actual resource is accessed by the kernel on behalf of
the caller. Figure 3-1 illustrates the basic LSM framework.

Figure 3-1. LSM hook architecture[1]



[1] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman. "Linux Security Modules: General Security Support for the

Linux Kernel," in proceedings of the 11th USENIX Security Symposium, August 2002, available at

http://lsm.immunix.org/lsm_doc.html.

SELinux is loaded into the kernel as an LSM module and is consulted for additional access validation
before the access attempt is allowed.

One of the ramifications of the LSM framework is that SELinux is consulted only if standard Linux
access checks succeed. In practice, this has no negative affect on the access control policy because
SELinux access control can be more restrictive than standard Linux DAC and not override the DAC
decision. However, the LSM framework can affect the audit data collected by SELinux. For example, if
you want to use the SELinux audit data to observe all access denials, be aware that in most cases
SELinux will not be consulted, and therefore cannot audit, if the denial is a result of standard Linux
security.

The LSM framework is comprehensive, and the hooks are scattered throughout the kernel. Each LSM
hook translates into one or more access permissions for one or more object classes. Understanding
object access permissions in SELinux is in large part related to understanding the LSM hooks.
Chapter 4, "Object Classes and Permissions," discusses object classes and permissions in detail.

http://lsm.immunix.org/lsm_doc.html


3.1.2. SELinux LSM Module

The SELinux kernel architecture reflects the Flask architecture, which was designed for a microkernel
environment. The Flask architecture has three primary components, as illustrated in Figure 3-2:
security server, object managers, and the access vector cache.

Figure 3-2. SELinux LSM module architecture
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The Flask design makes a strong distinction between security policy decision making and enforcement
functions. Policy decision making is the job of the security server. The name security server reflects
SELinux's micorkenel roots, where the policy decision role was encapsulated in a userspace server. In
Linux, the security server for kernel objects is located in the SELinux LSM module. The policy used for
the security server is embodied in a set of rules that is loaded via the policy management interface.
These rules can differ from system to system, making SELinux highly adaptable to various
organizational security goals. The architecture is designed such that the security server could be
completely replaced with logic that implements an entirely new access control policy without changing
the rest of the architecture. In practice, new security servers are not needed because type
enforcement provides sufficient flexibility for almost any access control security policy.

Object managers are responsible for enforcing the policy decisions of the security server for the set of
resources they manage. For the kernel, you can think of object managers as kernel subsystems that
create and manage kernel-level objects. Examples of kernel object managers include the filesystem,
process management, and System V interprocess communication (IPC). In the LSM architecture, the
object managers are represented by the LSM hooks; these hooks are scattered throughout the kernel



subsystems and call the SELinux LSM module for access decisions. The LSM hooks then enforce those
decisions by allowing or denying access to the kernel resource.

The third component of the SELinux architecture is the access vector cache (AVC). The AVC caches
decisions made by the security server for subsequent access checks and thus provides significant
performance improvements for access validation. The AVC also provides the SELinux interfaces for
the LSM hooks and hence with the kernel object managers.

The AVC is invalidated when a policy is loaded, thereby keeping the cache coherent. However,
SELinux does not fully implement access revocation on policy change. This is no worse than standard
Linux, which does not access revocation at all. In standard Linux, if you have a file descriptor, you
can use it regardless of the change in file access mode. In SELinux, for objects such as files where
access is validated on all attempts to use (for example, every read system call is checked against the
policy and not just open calls), access revocation works fine. Just having a file descriptor does not
mean access to the file will be granted. For some resources, however, such as memory mapped-files
and connection-oriented sockets, access is validated only when the resource is initially accessed and
not on subsequent use. In these cases, existing access is not revoked. We expect that there will be
further research to improve access revocation in SELinux.



3.2. Userspace Object Managers

One of the powerful features of the SELinux architecture is that it can be applied to userspace
resources and to kernel resources. Indeed, its origins were in microkernel research where most
resource management was performed by userspace servers. Examples of userspace servers in Linux
that can be enhanced to enforce access control over their resources include the X server and
database services. Each of these servers provides abstract resources (windows, tables, and so on)
over which mandatory security could be provided. This section examines two ways that the SELinux
architecture supports userspace servers.

3.2.1. Kernel Support for Userspace Object Managers

A simple way SELinux supports userspace objects is directly via the kernel security server, as
depicted in Figure 3-3.

Figure 3-3. Userspace object managers using kernel security server

[View full size image]



In this method, the userspace object manager behaves much like the kernel object managers. The
kernel security server contains the entire security policy, and the userspace object manager must
query the kernel for access control decisions. The primary difference is that userspace object
managers cannot use the kernel AVC. Each server must have its own, separate AVC that stores the
past decisions it has requested from the kernel. The AVC functionality for userspace servers is
contained in the library libselinux.

Another difference is that userspace object managers do not have LSM hooks, which are a kernel-
space concept. Instead, the object manager has internal interfaces with its AVC inside libselinux.
The AVC handles cache misses and queries the kernel on behalf of the object manager.

Although straightforward, this method for supporting userspace object managers has a number of
weaknesses. First, to use type enforcement, object managers must define object classes that
represent their resources. For example, a database server might define object classes that include
database, table, schema, entry, and so on. For kernel resources, object classes are fixed and
correspond to hard-coded class offsets defined in SELinux LSM module header files. The relationship
of class definitions in the policy and with those in the kernel code results in an unfortunate
dependency between the userspace policy and the code. Specifically, two userspace servers must be
careful not to both use the same object class offset in the kernel. The kernel provides no way to
manage this possible conflict.

The second weakness with this approach is that kernel security server is managing policy for object
classes for object managers that are not in the kernel. This increases storage cost within the kernel
for abstraction not related to the kernel and can negatively impact the cost of kernel policy validation
for AVC misses.

3.2.2. Policy Server Architecture

To address the weaknesses of using the kernel security server for userspace object managers and to
enhance the security capabilities of SELinux, an effort is ongoing to build userspace support for
userspace object managers. This project has two primary goals and a number of secondary goals.
The primary goals are as follows:

Provide better support for user-space object managers by providing a user-space security
server that makes access decisions for the user portion of the policy

Provide fine-grained access control for the policy itself by building a policy management server
that is a userspace object manager whose object classes represent portions of the policy

Collectively, these two servers are referred to as the policy server. Figure 3-4 depicts the architecture
of the policy server.

Figure 3-4. SELinux policy server architecture

[View full size image]



In the policy server architecture, all manipulation and management of the overall system policy is
controlled through the policy management server (PMS). The PMS is itself a userspace object
manager in that it creates object classes representing policy resources and enforces a fine-grained
access control policy over those resources. This feature alone provides significant security
enhancement for SELinux. Previously, access control to the policy was an all-or-nothing proposition;
you either could write the policy file or not. With the PMS, you can now allow access to portions of the
policy and limit access to others. For example, the SELinux policy can allow user management tools
to add users and make role assignments, but not change type enforcement allow rules. Better yet,
you can authorize a database server to change type enforcement (TE) rules relating to its object
classes and types, but not those of the kernel. Internally, the PMS is designed to use another recent
new feature of SELinux, loadable policy modules, which we describe later in this chapter.

The second major function of the PMS is to split the system policy into kernel and user portions and
load them respectively into the kernel security server and userspace security server (USSS). In this
way, the kernel is not made aware of rules and object classes of concern only to userspace object
managers. Userspace object managers query the USSS and not the kernel. AVCs in various
userspace object managers register with the USSS (and not the kernel) for policy update and cache
coherency functions.

The policy server architecture has a number of strengths in addition to the removal of the kernel's
responsibility for userspace resources and the fine-grained access for policy management. Because
the PMS is a running server, we can extend its interface to allow remote network access for
distributed policy management. The PMS and USSS are designed to allow for runtime registration of
object classes, breaking the code dependency for userspace object managers that exists in the
kernel. The difference between the two approaches is masked by libselinux providing backward
compatibility with existing work. Finally, the PMS and USSS are designed as separate services to
allow for one or both to be used without the other. For example, in a system where fine-grained
policy access control is unnecessary, the USSS could be used alone to support other userspace object
servers.



At the time of this writing, the policy server work is under development and not fully integrated into
any distributions. You can check the status of this work at http://sepolicy-server.sourceforge.net.

http://sepolicy-server.sourceforge.net


3.3. SELinux Policy Language

Chapter 2, "Concepts," presented an overview of the SELinux security concepts and introduced some
of the policy language concepts. In the previous section, you saw how the policy is used in the
SELinux architecture. For kernel resources, the policy is loaded into the SELinux LSM module security
server and used to make access control decisions. One strength of SELinux is that its policy rules are
not static. Rather, someone (or many ones) must write the policy and ensure that it reflects the
desired security goals. Fundamentally, this book is all about how to write SELinux policies (and how
to make sure they are good policies). Using and applying SELinux is all about writing and
understanding policies.

In Part II of this book, we take you through each major portion of the policy and discuss the policy
language syntax and semantics in detail. In this section, we provide an overview of how a policy is
constructed and compiled and show you how to build a policy from the strict policy we use as an
example throughout this book.

3.3.1. The Native SELinux Policy Language Compiler

The primary way to construct a policy file for the kernel is to compile it from a source policy file using
the checkpolicy program. This source file, which itself is constructed in several steps, is typically
named policy.conf. Checkpolicy checks the source policy file for syntax and semantic correctness
and writes the results in a form (called a binary policy file) that is readable by the kernel policy loader
(load_policy). The language syntax supported by checkpolicy is the native, primitive language
supported by SELinux. You can think of the checkpolicy language as analogous to assembly
language. Higher-level languages and other more abstract ways to create policies are being
developed, and some of these are discussed later in this book. For now, we focus on the native policy
language and construction of policy for enforcement by the kernel.

Figure 3-5 illustrates the primary sections of a policy source file expected by checkpolicy.

Figure 3-5. Organization of policy source file (policy.conf)



The first section of a policy source file defines the object classes to the security server. This section
also defines the permissions for each object class. For the kernel, these classes are directly related to
kernel source files. In general, as an SELinux policy writer you would never change or modify the
object class and permission definitions. We discuss the specific object classes and their associated
permissions in Chapter 4.

The next section contains the type enforcement statements, which is by far the largest portion of an
SELinux policy. This is the section that policy writers spend most of their time writing. It contains all
the type declarations and all the TE rules (including all allow, type_transition, and other TE rules).
We discuss types and the core TE rules in detail in Chapter 5, "Type Enforcement." The TE section
often contains thousands of type declarations and tens of thousands of TE rules. This section also
contains rules and declarations for roles and users in the policy. Roles and users, which are
supporting concepts to type enforcement, are discussed further in Chapter 6, "Roles and Users."
Some recent enhancements to the TE policy section, specifically conditional policies, are discussed in
Chapter 9. "Conditional Policies."



The next section of a policy source file contains the constraints. Constraints provide a means of
further limiting the TE policy beyond what the TE rules permit. The multilevel security (MLS) policy,
for example, is implemented as a set of constraints. We discuss constraints in Chapter 7,
"Constraints," and MLS in Chapter 8, "Multilevel Security."

The last section of a policy file contains labeling specifications. All objects must be labeled with a
security context for SELinux to enforce access control. This section tells SELinux how to treat
filesystems for the purpose of labeling and contains the rules for labeling transient objects that are
created at runtime. A separate related mechanism, called a file contexts file, is used to initialize the
security context labeling of files, directories, and other objects on permanent filesystems. These and
other topics relating to object labeling are discussed in Chapter 10, "Object Labeling."

Examining the policy.conf File

As with the binary policy file created by checkpolicy (policy.[ver]), you can use the
Tresys apol tool to view, search, and analyze the contents of the policy.conf file. The
policy.conf file is more abstract than the binary file format, which often makes it an
easier target for policy analysis and debugging. Also, the policy.conf file is closest in
form to the original source modules and therefore the best form for tracking back bugs
to the original source file. In any case, both are equivalent and should reflect the same
security policy.

3.3.2. Source Policy Modules in a Monolithic Policy

A common type of SELinux policy today is a monolithic policy. This is a policy that is constructed as a
single binary policy file by checkpolicy that is directly loaded into the kernel. Because SELinux
policies are usually quite large and complex, like software, they are constructed in terms of smaller
units called modules. There are a couple of different means to make a policy modular. The original
and still widely used method, called source modules, supports the development of a monolithic policy.
Source modules are combined as text files through a combination of shell scripts, m4 macros, and
Makefiles that together create a crude higher-level language. The policy modules are essentially
concatenated together into a single large source file (that is, policy.conf) that is then compiled by
checkpolicy into a binary file readable by the kernel.

3.3.3. Loadable Policy Modules

A new method for creating a modular policy is called loadable modules, which uses recent extensions
to checkpolicy and a module compiler (checkmodule) to construct loadable policy modules compiled
independently of each other. Loadable modules are also the basis for the policy server discussed
earlier in this chapter. In the loadable module case, there is no longer a monolithic binary policy
constructed; instead, a (expectedly smaller) core subset of the policy is constructed called the base
module. You create the base module much like you create the monolithic policy. With loadable
modules, however, you can streamline the base module, including only rules relating to the core
operating system. The rest of the policy is created as separate loadable modules. You can add all



other policy rules in a modular fashion when you install their associated software package.

Loadable modules introduce policy syntax changes that are designed to ease the division of the policy
into separate, individually distributable policy modules. These changes differ for base and nonbase
modules. The base module uses the same policy language as monolithic policies with minor additions.
Nonbase (that is, loadable) modules use a subset of the standard policy language with several
additional language features. The subset of the policy language includes most of the type
enforcement, role, and user statements. The additional language features are used to manage
dependencies between modules. We discuss the languages changes resulting form loadable modules
in detail using sidebars throughout Part II.

Fedora Core 5 (FC5) has adopted the loadable module infrastructure for future versions. In this book,
we primarily discuss the monolithic policy approach and language, but we do use sidebars to discuss
the newer loadable modules features.

3.3.4. Building and Installing Monolithic Policies

As you read through the remainder of this book, you will likely want to experiment with SELinux
policy writing. You will need to compile your modifications into a complete policy file and experiment
with your modifications by loading the new policy into the kernel and experiencing the resulting
changes in the kernel's access control enforcement. Before you can complete these actions, we must
introduce the basic means of building and installing kernel security policies.

Tip

Remember that if you install your policy, the kernel will immediately begin to enforce
access based on the rules in the policy. While you are learning about SELinux and
experimenting with the language, you may end up causing programs to crash due to lack of
access. We suggest you experiment with policy writing with the system in permissive mode
(setenforce 0) until you become more familiar with the policy language and its
ramifications. Of course, you should always run production systems in enforcing mode
(setenforce 1).

The example policy build method (see Chapter 11, "Original Example Policy") is a typical way that a
policy is constructed. Figure 3-6 shows this type of construction.

Figure 3-6. Build and load process for SELinux policy using source
modules

[View full size image]



Starting from the left side of this figure, you have the source files for the policy broken down into
many tens of individual source modules. Later in the book, we talk about various conventions for
organizing these modules in the example policy. For now, just understand that these files are
combined through a combination of scripts and macro processors into the single policy.conf file,
which is a complete and syntactically correct statement of a SELinux source policy. You then compile
the source policy using checkpolicy into a binary policy file (assuming no errors!) appropriate for the
kernel. The load_policy program is then used to load the binary policy file into the kernel, which then
enforces access control based on the policy rules.

At this point in this book, you might find this process overwhelming and confusing, especially in light
of our discussion of means to construct a policy other than source modules to build policy. Don't
panic; we just want you to get a sense of the overall process. Policy source directories usually have a
Makefile that automates this process for you. In the policy we use in Part II, which if installed
correctly should be in /etc/selinux/strict/src/policy/, the interesting make targets are as follows:

policy Make policy.conf and policy.[ver] locally to test the compilation
and check for error.

install Do everything that make policy does plus install the binary policy file
such that it will be loaded into the kernel at boot time and the policy
configuration files.

load Do everything that make policy does plus immediately load the
binary policy file into the kernel as the active access control policy
and install the file_contexts file.



So, for example, make policy will perform all the steps in Figure 3-6 except the last step (install the
binary policy and load it into the kernel).

Feel free to experiment with the various make targets in our example policy; just be careful about
doing a make install or make load because this will change the access control enforcement on your
system.



3.4. Summary

SELinux is implemented as an LSM module in the kernel. SELinux uses LSM hooks throughout
the kernel to control access to kernel resources. Access decisions are made by the SELinux
security server, which is part of the SELinux LSM module. The security policy enforced by the
security server is loaded into the kernel via a privileged userspace interface. The AVC provides
performance improvement for access validation.

The SELinux framework also supports userspace object managers through the libselinux
library. In its basic form, the kernel security server directly provides access validation, whereas
the library contains a per-process AVC. This approach requires the kernel to hold the policy for
all userspace managers and to be aware of all userspace object classes.

The emerging policy server architecture enhances support for userspace object managers by
providing a userspace security server that will enforce all portions of the policy relating to
userspace objects, thereby relieving the kernel of its need to know of userspace object classes
and policy rules. The policy server will also provide fine-grained access control to the policy
itself, allowing greater distribution of policy management authority.

SELinux policies tend to be large and complex, necessitating the need for them to be
constructed as a collection of modules. A common method is to use source modules, where all
modules are built as part of a single, monolithic module. This is the method used in Red Hat
Enterprise Linux 4 and Fedora Core 4, and the one we assume in Part II.

A second modularity approach provides for loadable modules, where policy pieces can be
constructed largely independent of other modules, and combined at install time on a running
system. In the case of loadable modules, a base module is created in a manner similar to a
monolithic policy, but with the expectation that the base module can be smaller and focused on
the core operating system. Additional software packages will have their portion of the policy
installed as separate loadable modules. This is the method being adopted by FC5.

Checkpolicy is the policy compiler that takes a complete policy source file (policy.conf) and
validates the syntax and semantics of the file and creates a binary policy file. In the case of
loadable modules, checkpolicy compiles the base policy module, and the program checkmodule
compiles the individual loadable modules.



Exercises

1. In the LSM framework, which check usually occurs first, the standard Linux access
checks or the SELinux checks? Why?

2. In the kernel, how do SELinux object managers and LSM hooks relate?

3. When a new policy is loaded into the kernel, the access vector cache (AVC) is
invalidated. Why do you think that is necessary?

4. Although SELinux does not fully implement access revocation on policy change, for
objects such as regular files it does. Standard Linux access control does not implement
access revocation for regular files. Explain the reasons for this difference.

5. Why do you think userspace object managers cannot use the kernel access validation
cache like they do the kernel security server?

6. In the policy server architecture, would it ever make sense to have a userspace object
manager without the policy management server? Why or why not?

Extra credit: Go to the example policy source directory and make policy to create the policy.conf
(source) and policy.[ver] (binary) policy files. Use apol to examine the number of allow rules in
each file and notice the large difference. Any ideas what might be the cause of that difference?
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This chapter covers object classes and permissions defined in SELinux. We discuss the policy
language statements that define object classes and permissions the kernel supports and provide an
overview of the kernel object classes standard in a SELinux system. Appendix C, "Object Classes and
Permissions," includes a detailed listing of each standard SELinux object class and its associated
permissions.



4.1. Purpose of Object Classes in SELinux

Object classes and their associated permissions are the basis for access control in SELinux. Object
classes represent categories of resources such as files and sockets, and permissions represent
accesses to those resources such as reading or sending. Understanding object classes and
permissions is a difficult aspect of SELinux because it requires both SELinux and Linux knowledge.

An object class represents all resources of a certain kind (for example, files or sockets). An instance
of an object class (for example, a specific file or socket) is simply called an object. Often the terms
object class and object are used interchangeably, but it is important to understand the difference.
Object class refers to the entire category of resources (files); object refers to a specific instance of
the object class (/etc/passwd).

As discussed in Chapter 2, "Concepts," access to objects is expressed in the policy through
permissions to object classes that have a specified type(s). To illustrate, let's consider an allow rule
from Chapter 2:

allow user_t bin_t : file {read execute getattr};

In this rule, processes with the type user_t (that is, the source or subject) are allowed to read,
execute, and get attributes for all objects of class file that have the target type (bin_t) in their
security context. The object class file specifies the category of resource, and bin_t specifies which
instances of that category of resources to which this rule applies (that is, those file objects that have
the type bin_t). It does not apply to objects that have bin_t type that are not of file class nor to file
objects that do not have bin_t as their type.

The permissions in this ruleread, execute, and getattrdefine the access allowed to those objects by
subjects (implicitly process objects) that have the type user_t. Each of these permissions, which
must be valid for the file object class, represent some form of access to the objects. (For example,
the read permission is required to use the open(2) system call to open a file for reading, use the
read(2) system call on an opened file, and so on.) The set of permissions defined for an object class
(also called an access vector) represents all the possible access that can be allowed to the resources
represented by that object class.

The set of object classes available depends on the version of SELinux and its Linux kernel. Over time,
new and different object classes have evolved to address new and changed features of the kernel.
For example, newer versions of the Linux kernel have introduced a new Netlink-specific socket for
controlling the audit framework. [1]. For those kernels that support the Netlink socket, there is an
SELinux object class with appropriate permissions defined.

[1] Information about and source code for the Linux audit framework and tools is available at

http://people.redhat.com/sgrubb/audit/

http://people.redhat.com/sgrubb/audit/


4.2. Defining Object Classes in SELinux Policy

A policy must include declarations for all object classes and permissions supported by the SELinux
kernel and other object managers. In general, we, as policy writers, are not concerned with creating
new objects classes; however, we need to understand the object classes that are defined to write
effective SELinux policies. It is useful to understand the object class and permission declaration
syntax because it allows us to understand the supported object classes and permissions in the policy
version we are using.

Adding New Object Classes and Permissions

Adding new object classes and changing the permissions on existing object classes are
complex tasks that should normally be undertaken only when changing the actual system
code itself. Unlike other aspects of the SELinux policy language, object classes and
permissions are closely tied to the implementation details of Linux, particularly the
kernel. In fact, object classes and permissions are designed to represent as accurately as
possible the resources implemented by the system. For this reason, it makes sense to
change the object classes or permissions that match a corresponding change in the
system.

An example of the type of change that would warrant a change in the object classes and
permissions is the addition of a new form of interprocess communication (IPC) to the
kernel. In this case, an entirely new category of resource is being added, likely with new
or expanded system calls, and a new object class would likely be required to accurately
represent the semantics of this resource.

Adding or changing object classes or permissions requires changes both to the policy and
to the system code that will enforce access control based on the new object classes or
permissions. Simply adding an object class or permission to the policy without changing
the code will likely have no effect other than wasting kernel memory.

Basically, for the target audience of this book (SELinux policy writers and
administrators), you should never change the object class and permission definitions.

4.2.1. Declaring Object Classes

Object classes are declared using the class declaration statement. The class declaration statement
simply declares an object class name and nothing else. For example, we declare an object class for
directories (named dir) with the following statement:

class dir



The class declaration statement consists of the keyword class followed by the class name. Notice
that the class declaration statement does not end in a semicolon like many other policy statements.
You can see the full syntax for the class statement in the sidebar on page 63.

Object class names have a separate namespace. It is possible, but generally poor policy writing
practice, to have object classes, permissions, types, and so on all have the same name.

Class Declaration Statement Syntax

The class declaration statement allows you to declare object class names. The full syntax
of the class declaration statement is as follows:

class class_name

class_name An identifier for the object class. The identifier can be any
length and can contain ASCII letters or numbers.

Class declarations are valid only in monolithic policies and base loadable modules. They
are not valid in conditional statements and non-base loadable modules.

4.2.2. Declaring and Associating Object Class Permissions

There are two methods of declaring permissions. The first is called common permissions and allows
us to create permissions that we associate with an object class as a group. Common permissions are
useful when similar object classes (for example, files and symbolic links) share a set of access
permissions. The second method is called class-specific permissions and allows us to declare
permissions specific to that object class alone. As you will see, some object classes have only class-
specific permissions, some have only common permissions, and some have both.

4.2.2.1. Common Permissions

The common permission statement allows the creation of sets of permissions that we associate as a
group with two or more object classes. The full syntax of the common permission statement is shown
in the sidebar on page 64. For example, the UNIX philosophy of "everything is a file" means that
many file-related object classes have a common set of permissions. A common permission statement
to declare these file-related permissions in SELinux is as follows:

common file
{

      ioctl



      read
      write
      create
      getattr
      setattr
      lock

      relabelfrom
      relabelto
      append
      unlink
      link
      rename
      execute
      swapon
      quotaon
      mounton
}

This statement declares a common permission set called file and defines it as a set of permissions
called ioctl, read, write, create, and so on. A common permission statement by itself has no effect;
it is only when we associate a set of common permissions with an object class that they are useful.

As with object classes, common permission names are declared in their own namespace. This can
lead to some confusion if we are not careful. For example, as illustrated in the preceding examples,
we have both an object class and a common permission named file. Although the names are the
same, they are in fact two distinct and very different components of the policy.

Common Permission Statement Syntax

The common permission statement allows you to declare a common permission name
that has a set of permissions that can be associated with an object class as a group.
Common permissions can be associated with multiple object classes. The full syntax for
the common permission statement is as follows:

common common_name { perm_set }

common_name An identifier for the common permissions. The identifier can
be any length and can contain ASCII letters, numbers, a
dash (-), or a period (.).

perm_set One or more permission identifiers in a space-separated list.
The identifiers can be any length and contain ASCII letters,
numbers, a dash (-), or a period (.).

A common permission set is associated with an object class using the access vector



statement.

Common permission statements are valid only in monolithic policies and base loadable
modules. They are not valid in conditional statements and non-base loadable modules.

4.2.2.2. Associating Permissions with Object Classes

We associate permissions with an object class using the access vector statement. The full syntax for
the access vector statement is shown in the sidebar on page 66. We use the access vector statement
to associate common and class-specific permissions. For example, the following statement associates
a single class-specific permission with the object class dir:

class dir { search }

As this example shows, the access vector statement looks similar to the class declaration statement
(a similarity attributable to the reuse of the keyword class). The class declaration and access vector
statements are distinct despite beginning with the same keyword. The access vector statement must
provide a previously declared object class name (dir) and then provide one or more permissions. In
this partial example, we define a single, class-specific permission (search). Notice that this statement
also does not end in a semicolon.

The previous access vector statement would result in the dir object class having one class-specific
permission: search. In general, you would see multiple permissions for an object class, as follows:

class dir { search add_name remove_name }

This example associates three class-specific permissions with the object class dir. We can also
associate common permissions using the optional inherits keyword in the access vector statement.
For example, the dir object class is one of several object classes that are "file-like" and share
common permissions with other file-like classes. The following access vector statement is a complete
access vector statement for dir associating the common permission file, shown previously, along
with several class-specific permissions unique to directories:

class dir
inherits file
{

      add_name
      remove_name
      reparent
      search
      rmdir
}

As this example illustrates, we use the keyword inherits followed by the name of a previously
declared common permission set (file) to associate all the common file permissions with dir. The
result of this statement is that the valid permissions for the object class dir are all those defined



earlier for the common permission file and the five permissions specific to dir.

It is possible to have an object class that has only common permissions. For example, the access
vector statement for the object class for symbolic link files (lnk_file) is this:

class lnk_file inherits file

This statement results in the class lnk_file having only those permissions defined in the common
permission file and no others.

Likewise, it is possible to have object classes with only class-specific permissions (that is, no common
permissions). For example, the access vector statement for the object class representing file
descriptors (fd) has a single class-specific permission allowing use of a file descriptor:

class fd { use }

Access Vector Statement Syntax

The access vector statement associates permissions with a previously declared object
class. The full syntax for the access vector statement is as follows:

class class_name [ inherits common ] [{ perm_set } ]

class_name A previously declared object class name.

common A previously declared common permission set name.

perm_set One or more permission identifiers in a space-separated list.
The identifiers can be any length and contain ASCII letters,
numbers, or a period (.).

At a minimum, either one common or a perm_set must be specified, but both can be
provided. The resulting permissions for the object class are the union of the common
permissions and the perm_set.

Access vector statements are valid only in monolithic policies and base loadable modules.
They are not valid in conditional statements and non-base loadable modules.



4.3. Available Object Classes

This chapter provides an overview of the kernel object classes available in Fedora Core 4 (FC4). Our
goal is to describe the object classes and how the system resources are mapped to those object
classes. Appendix C provides a reference for all object classes and their associated permissions. The
most difficult part of writing good policy is understanding the semantics of the object classes and
permissions and the implications of those semantics in the context of an application policy on a
particular system.

An FC4 system has more than 40 kernel object classes representing all the resources provided by the
kernel. The number of object classes illustrates a basic philosophy in SELinux to represent the kernel
resources as completely and accurately as possible. The richness and complexity of Linux means that
this accurate representation is necessarily rich and complex itself. This complexity may seem
daunting, but it is necessary to give SELinux the flexibility to fully address the security challenges
facing Linux. Tools and technology are emerging that use the richness of SELinux to provide
sophisticated security without the user needing to be aware of the underlying complexity.

To ease understanding, we divide the kernel object classes into four categories: file-related, network-
related, System V IPC, and miscellaneous.

4.3.1. File-Related Object Classes

The first category of object classes are those related to files and other resources stored in
filesystems. These are often the most familiar object classes to most users. Included in this category
are all the object classes that can be associated with persistent, on-disk filesystems and with in-
memory filesystems, such as proc or sysfs.

In UNIX-like systems, an underlying concept is that "everything is a file." This is in many ways true,
but it obscures the fact that not all "files" are the same. In reality, a modern UNIX-like system such
as Linux has special files for devices, and IPC, in addition to standard files used for the storage of
data. SELinux accurately represents this more detailed view of the kernel. Table 4-1 summarizes the
file-related object classes.

Table 4-1. File-Related Object Classes

Object
Class

Description

blk_file Block files

chr_file Character files

dir Directories



Object
Class

Description

fd File descriptors

fifo_file Named pipes

file Ordinary files

filesystem Filesystem (for example, an actual partition)

lnk_file Symbolic links

sock_file UNIX domain sockets

The object classes file and dir represent ordinary files and directories, respectively. Ordinary files
are those files that store data; they are the most familar objects on most systems. Directories, which
are a special file in Linux, are unique because they can contain other objects.

The lnk_file object class represents symbolic links. It is important in many situations to distinguish
between regular files and symbolic links to prevent common attacks. Malicious processes and users
can create symbolic links that cause a process to access or modify files other than those intended.
The separate lnk_file object class allows policies to be written that prevent these types of attacks.

The object classes fifo_file and sock_file represent special files used for IPC. The fifo_file object
class represents fifo files, also called named pipes. The sock_file object class controls the ability to
create, access, and so on the file-related object associated with a UNIX domain socket. We discuss
the UNIX domain socket object classes and their relationships to socket files in the next section.

In Linux, devices are accessed through special files that are commonly found in the /dev/ directory.
These files represent, through major and minor device numbers, block and character devices.
Character devices are those devices that programs read or write data to or from as a stream of
bytes. Block devices are those devices that require data to be passed in larger blocks. The chr_file
and blk_file object classes represent character and block devices, respectively.

The final two object classes in this category, filesystems and file descriptors, are not typically
considered objects in Linux. The filesystem object class represents a mounted filesystem. This object
class controls global operations such as mounting or querying quotas. For example, using the
filesystem object class, we can allow only mounting of filesystems that support the storage of
security contexts. All filesystems of a particular type (for example, ext3) get a default label defined in
the policy with the fs_use statement, which is described in Chapter 10, "Object Labeling." That
default type may be overridden when the partition is mounted with the context mount option, also
described in Chapter 10.

File descriptors are handles, representing opened file-related objects, stored within processes.
Although distinct from the file-related objects they represent in kernel data structures, it is common
to think of file descriptors as the underlying file-related object. Indeed, standard Linux access control
does not provide access control over file descriptors separately from that of the underlying object.
This strategy ignores the fact that file descriptors are distinct resources that can be passed between
processes, most commonly when a child inherits the file descriptors from its parent. This inheritance
is not always desirable, and admonishments to reduce file descriptor inheritance appear in many
Linux programming guides, particularly for daemons. To address this and other issues, we have the
fd object class, which represents file descriptors in SELinux. Using this object class it is possible to
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prevent the usage of file descriptors passed or inherited between processes. It is important to note,
however, that the permission to use a file descriptor is not sufficient to access the underlying file-
related object; the process must also have the associated permission on the underlying object.

4.3.2. Network-Related Object Classes

The network-related object classes represent network resource such as network interfaces, various
types of sockets, and hosts. The current object classes are sufficient to allow comprehensive control
over networking on a single system. Further enhancements in this area, such as labeled network
packets, are likely in the future. [2] Table 4-2 summarizes the network- and socket-related object
classes.

[2] Morris, James. Directions in SELinux Networking. Presentation at the Linux Kernel Networking Summit, 2005. Slides available

at http://people.redhat.com/jmorris/slides/ns2005.pdf.

Table 4-2. Network-Related Object Classes

Object Class Description

association IPsec security association

key_socket Sockets that are of protocol family PF_KEY, used for key
management in IPsec

netif Network interface (for example, eth0)

netlink_audit_socket Netlink socket for controlling auditing

netlink_dnrt_socket Netlink socket for controlling DECnet routing

netlink_firewall_socket Netlink socket for creating user space firewall filters

netlink_ip6fw_socket Netlink socket for creating user space firewall filters

netlink_kobject_uevent_socket Netlink socket for receiving kernel event notifications in user
space

netlink_nflog_socket Netlink socket for receiving Netfilter logging messages

netlink_route_socket Netlink socket for controlling and managing network resources
such as the routing table and IP address

netlink_selinux_socket Netlink socket for receiving notices of policy load, enforcement
mode toggle, and AVC cache flush

netlink_tcpdiag_socket Netlink socket for monitoring TCP connections

netlink_socket All other Netlink sockets

netlink_xfrm_socket Netlink socket for getting, maintaining, and setting IPsec
parameters

node Host represented by an IP address or range of addresses

http://people.redhat.com/jmorris/slides/ns2005.pdf


Object Class Description

packet_socket Raw sockets where the protocol is implemented in userspace

rawip_socket IP sockets that are neither TCP or UDP

socket All other sockets

tcp_socket TCP sockets

udp_socket UDP sockets

unix_dgram_socket IPC datagram sockets on a local machine (UNIX domain)

unix_stream_socket IPC stream sockets on a local machine (UNIX domain)

The node, netif, packet_socket, rawip_socket, tcp_socket, udp_socket, and socket object classes
control typical access to the network. The netif object class represents network interfaces. Each
named network interface (for example, eth0, eth1, and so on) is represented by an instance of the
netif object class. Remote hosts on the network, identified by IP address or range, are represented
by the node object classes. Using the node object class, we can limit the hosts (via IP address) to
which a process may interact over the network. The various socket object classes listed previously
represent the kinds of socket by protocol. Successfully sending or receiving network data requires
permissions on all the relevant netif, node, and socket object class instances.

The standard networking sockets are divided by protocol (as determined on creation by the
socket(2) system call). The different socket object classes allow us to limit the type of packets an
application can send or receive. This is particularly helpful in limiting the capability of applications to
send raw packets. The object classes tcp_socket and udp_socket represent sockets for TCP and UDP,
respectively. The rawip_socket object class represents sockets for sending raw IP packets and the
packet_socket object class represents sockets for sending any other type of raw packet. All other
sockets are represented by the socket object class.

Communication using IP Security (IPsec) has additional resources represented by the object classes
association and key_socket. An IPsec security association is a connection that affords security
services to the traffic that it carries. The association object class repesents IPsec associations. IPsec
requires the management of keys through a key management (PF_KEY) socket, which is represented
by the key_socket object class.

Local communications on Linux boxes can be accomplished using UNIX domain sockets (PF_UNIX).
These sockets are commonly used for local IPCs. Connection-oriented sockets, also called stream
sockets, are represented by the unix_stream_socket object class; datagram sockets are represented
by the unix_dgram_socket object class. UNIX domain sockets can be associated with a special file in a
filesystem to allow other applications to easily connect to the socket. This file is represented by the
sock_file object class, a file-related object class described earlier.

The final group of sockets in SELinux are the Netlink sockets. These sockets were originally developed
to provide a standard means of configuring networking in Linux. [3]. They are now used to
communicate a variety of information between kernel and userspaces. There are several object
classes representing Netlink sockets based on protocol type, and the generic netlink_socket for any
remaining protocols without a specific object class.

[3] Horman, Neil. Understanding and Programming with Netlink Sockets. http://people.redhat.com/nhorman/papers/netlink.pdf.
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http://people.redhat.com/nhorman/papers/netlink.pdf
http://people.redhat.com/nhorman/papers/netlink.pdf


4.3.3. System V IPC Object Classes

The IPC-related object classes represent System V IPC resources (see Table 4-3). The msgq and msg
object classes represent message queues and the messages in a message queue. The sem object
class represents semaphores. The shm object class represents shared memory segments. Note that
access to global system information about all System V IPC resources is controlled by a permission
on the system class.

Table 4-3. IPC-Related Object
Classes

Object Class Description

ipc Deprecated; no longer used

msg Messages within a message queue

msgq Message queues

sem Semaphores

shm Shared memory segment

4.3.4. Miscellaneous Object Classes

Table 4-4 lists a number of remaining object classes that do not easily fit into one of the other
categories.

The capability object class represents process capabilities in the standard Linux access control
model. This object class allows SELinux to control the capabilities granted to "root" processes.
Examples of these capabilities include the ability to override the discretionary access controls
(permissions modes) and send raw network packets. This object class and its permissions allow
control over whether a process may use a capability it already has been granted by standard Linux.

The remaining two object classes, security and system, represent access to special resources of the
SELinux security server and the system, respectively. They are unique in that there is only ever one
instance of each of these object classes, reflecting that there is ever only one security server and
system.

Table 4-4. Miscellaneous Object Classes

Object Class Description



Object Class Description

capability Privileges that are implemented as capabilities in
Linux

process Processes which are also objects in SELinux

security SELinux security server in the kernel

system System as a whole

capability Privileges that are implemented as capabilities in
Linux

process Processes which are also objects in SELinux

security SELinux security server in the kernel

system System as a whole



4.4. Object Class Permission Examples

To provide a greater understanding of how permissions control access to system resources, let's
further discuss the permissions for two object classes: file and process. We provide a detailed
description of all permissions for each object class in Appendix C.

Access Revocation

The revocation of previously granted access is an important part of creating a flexible
and dynamic security mechanism. Revocation is needed either when the policy changes
or when the security context of an object is changed. For example, if the security context
of a file is changed, processes that have that file open may no longer be allowed the
same access to the file by the new policy. Mechanically, the system would have to revoke
any existing access to the file if that access is not consistent with the change. Ensuring
access revocation in all circumstances is a difficult task for any complex operating
system.

SELinux supports revocation in many circumstances and provides much more access
revocation support than standard Linux. For example, file access is checked on every
read and write to a file; so if the security context of the file changes, the access is
revoked on the next read or write attempt.

There are circumstances where access is not revoked (for example, with memory-
mapped file access and outstanding asynchronous I/O requests). It is likely that
revocation support will increase in SELinux, but it is unlikely that full coverage can be
achieved. This is partly due to the nature of the UNIX application programming interfaces
(APIs), partly due to community resistance to invasive changes to certain kernel
subsystems, and partly due to the inherent complexity of the task.

In general, you can avoid most revocation issues by designing systems that do not
relabel objects. SELinux provides permissions (relabelfrom and relabelto) to restrict
this ability.

4.4.1. File Object Class Permissions

Table 4-5 lists the permissions for the file object class. Most of the permissions are common to all
file-related object classes; only execute_no_trans, entrypoint, and execmod are specific to the file
object class (these are marked with a an asterisk, *).

There are three categories of permissions for the file object class: permissions that map directly to
standard Linux access control permissions, extensions of the standard Linux permissions, and



SELinux-specific permissions.

Table 4-5. File Object Class Permissions

Permission Description

append Append to file contents (that is, opened with O_APPEND flag).

create Create new file.

entrypoint* File can be used as the entry point of the new domain via a domain transition.

execmod* Make executable a file mapping that has been modified (implied by a copy-on-
write).

execute Execute; corresponds to x access in standard Linux.

execute_no_trans* Execute file in the caller's domain (that is, without a domain transition).

getattr Get attributes for file, such as access mode (for example, stat, some ioctls).

ioctl ioctl(2) system call requests not addressed by other permissions.

link Create hard link to file.

lock Set and unset file locks.

mounton Use as mount point.

quotaon Allow file to be used as a quota database.

read Read file contents; corresponds to r access in standard Linux.

relabelfrom Change the security context from the existing type.

relabelto Change the security context to the new type.

rename Rename a hard link.

setattr Change attributes for file such as access mode (for example, chmod, some
ioctls).

swapon Deprecated; was used to allow file to be used for paging/swapping space.

unlink Remove hard link (delete).

write Write file contents; corresponds to w access in standard Linux.

4.4.1.1. Standard Linux Permissions

The permissions read, write, and execute correspond loosely to the standard Linux permissions read,
write, and execute (that is, r, w, and x). There are some differences from the standard permission
checks. In standard Linux, access is usually checked only when the file is opened. In SELinux, access
is checked on every use when feasible. The read and write permissions are checked both at file open
and on each subsequent read or write operation. The read permission covers the ability to read a file



in its entirety. It includes the permissions to access the file in a random access manner. The write
permission includes the permission to write to a file, including appending. Like read permission, write
permission covers random access writing. The read and write permissions are also checked when a
file is memory mapped, for example, mmap(2) system call, or the protections on an existing mapping
are changed with mprotect(2) system call.

The execute permission controls the ability to execute the file using the execve(2) system call. It is
required regardless of whether there is a domain transition (see exec_no_trans below). The execute
permission is also required to successfully use a file as a shared library.

4.4.1.2. Extensions to the Standard Linux Access Control

One of the benefits of SELinux is that it provides additional permissions that give a finer granularity of
control than what is available with standard Linux.

In standard Linux, the ability to create a file is governed by the ability to write to the containing
directory. In SELinux, the create permission directly controls the ability to create a file of a specific
SELinux type. Using this permission, we can allow a domain type to create files of type etc_t, but not
of type shadow_t. Like many permissions in SELinux, the file create permission is necessary but not
sufficient. For example, the creating domain type must also have permission to create objects in the
containing dir object and the permissions to create permission the file object. We likely require
write permission for the object class to which we give create permission for any practical application.

The ability to view or modify file attributes, including permission modes and ownership information, is
controlled separately with the getattr and setattr permissions. The getattr permission controls the
reading of file attributes (for example, using the stat(2) system call). The setattr permission
controls the writing of file attributes (for example, using the chmod(2) system call).

Locking files, either via the flock(2) or fnctl(2) system calls, is controlled by the lock permission.
No other permissions are required to obtain the lock, though practically you are required to have
read, write, or append permission to obtain a file descriptor to pass to the relevant locking system
call.

It is often useful to allow append-only access to a file. For example, it is important that log files can
never be overwritten to prevent attackers from erasing evidence. SELinux provides the separate
append permission, which strongly enforces the O_APPEND mode for open. Allowing a domain type
append permissions without write permissions means that process with that domain type can only
add data to a file.

Just as creation is controlled separately with the create permission, creating and removing hard links
to a file is controlled with the link and unlink permissions. In Linux, files can be referenced by one or
more names, called hard links. There is no "real" name for a file; all hard links are equally valid
names for a file. There are many security implications to this semantic of Linux filesystems. Unlinking
a file, which is controlled by the unlink permission, is essentially deleting a file (although if there are
multiple hard links that file will in fact not be deleted, just that name). Likewise, linking a file,
controlled by the link permission, is really creating a new name for a file. The ability to change the
name of a hard link, using the rename(2) system call, is controlled by a third permission, rename. All
three hard link-related permissions require additional permissions on the effected directories to
successfully complete.

The final extended permissions for files are mounton, quotaon, and swapon. The mounton permission



controls the ability to mount (mount(2) system call) using the file as a mount point. It is more
common to use directories as a mount point; when performing bind mounts (MS_BIND), however, it is
possible to use a file as a mount point. The quotaon permission controls the use of a file to store
quota information. When turning quotas on using the quotactl(2) system call (Q_QUOTAON), the path
of the file used to store the quota information is provided. The calling process domain type must have
quotaon permission to that file to successfully complete the system call.

4.4.1.3. SELinux Specific Permissions

There are five SELinux specific permissions for files: relabelfrom, relabelto, execute_no_trans,
enTRypoint, and execmod.

The relabelfrom and relabelto permissions control the capability of a domain type to change the
type of a file from one type to another type, respectively. To successfully relabel a file, a domain type
must have relabelfrom permission for file objects of the current type and relabelto permission for
file objects of the new type. Notice that these permissions do not allow control over the exact pairs
of permissions; a domain can relabel from any type for which it has relabelfrom permission to any
type for which it has relabelto permission. It is possible to add contraints on relabeling, as you will
see with the validatetrans rule in Chapter 7, "Constraints." Relabeling objects is a potentially
dangerous operation to the security of the system and should be tightly controlled.

The execute_no_trans permission allows a domain to execute a file without a domain transition. This
permission is not sufficient to execute a file; the execute permission is also required. Without the
execute_no_trans permission, a process may execute only the file with a domain transition. We want
to exclude execute_no_trans permission if we want to ensure that an execution will always cause a
domain transition (or fail). For example, when the login process executes a shell for a user login, we
always want the shell process to transition from the privileged login domain type.

The entrypoint permission, which we discussed in the description of domain transitions in Chapter 2,
controls the ability to use the executable file to allow a domain type transition. The execute,
execute_no_trans, and entrypoint permissions allow fine-grained control over what code can execute
with what domain type. SELinux's capability to control the domain type of individual programs is a
primary reason for its capability to provide strong yet flexible security.

The execmod permission controls the ability to execute memory-mapped files that have been modified
in the process memory. This is most useful in preventing shared libraries from being modified within
a process. Without this permission, if a memory mapped file is modified in memory, the process will
no longer be able to execute the file.

4.4.2. Process Object Class Permissions

Table 4-6 list the process object class permissions. Unlike the file permissions, many of the process
permissions do not directly correspond to standard Linux access controls as Linux does not
traditionally treat processes as formal objects.

Table 4-6. Process Object Class Permissions



Permissions Description

dyntransition Allow a process to dynamically transition to a new context.

execheap Make the heap executable.

execmem Make executable an anonymous mapping or private file mapping that is writable.

execstack Make the process stack executable.

fork Fork into two processes.

getattr Get attributes of a process through the /proc/[pid]/attr/ directory.

getcap Get Linux capabilities allowed for this process.

getpgid Get group process ID of process.

getsched Get priority of process.

getsession Get session ID of process.

noatsecure Disable secure mode environment cleansing. Allows process to disable secure mode
feature of glibc on execve(2).

ptrace Trace program execution of parent or child.

rlimitnh Inherit process resource limits on execve(2).

setcap Set Linux capabilities allowed for this process.

setcurrent Set the current process context. This is the first capability checked when a process
tries to perform a dynamic domain transition.

setexec Override the default context for the next execve(2).

setfscreate Allow a process to set the context of an object created by the process to something
other than the default context.

setpgid Set group process ID of process.

setrlimit Change process hard resource limits.

setsched Set priority of process.

share Allow state sharing with cloned or forked process.

siginh Inherit signal state on execve(2).

sigkill Send SIGKILL signal.

sigchld Send SIGCHLD signal.

signal Send a signal other than SIGKILL, SIGSTOP, or SIGCHLD.

signull Test for existence of another process without sending a signal.

sigstop Send SIGSTOP signal.

TRansition Transition to a new context on execve(2).



4.4.2.1. Process Creation

The fork permission controls the ability of a process to use the fork(2) system call. This system call
creates a copy of the process that differs only in its process identifier and resource utilization data.
The security context of a process does not change as the result of forking. Forking is usually the first
step in executing a new program. Controlling the ability of a process to fork limits its ability to use
system resources and can potentially prevent certain types of denial-of-service attacks.

Three additional permissions control the sharing of state on process transition. The share permission
controls sharing of process state, such as file descriptors and memory address space, on a execve(2)
system call. The siginh permission controls the inheritance of signal state, including any pending
signals. Finally, the rlimitnh permission controls the inheritance of resource limits from the parent
process.

4.4.2.2. Process Domain Type Transition

As described for domain transitions in Chapter 2, the transition permission controls the ability of a
process in one domain to transition into another via the execve(2) system call. A domain transition
can occur, if allowed, automatically as a result of a type_transition rule or when explicitly requested.
The ability to request an explicit transition is controlled by the setexec permission. Programmatically,
this request is made by writing to a special file in the proc filesystem. This procedure is abstracted in
the setexeccon(3) library function. The ability to see the currently requested transition for the next
call to execve(2) system call is controlled by the getattr permission.

The noatsecure permission causes the kernel to not set the secure mode of glibc on a domain
transition. In secure mode, glibc cleanses the process environment, including powerful environment
variables such as LD_PRELOAD. Without cleansing the environment the source domain can potentially
control critical aspects of the target domain. Allowing the noatsecure permission is especially
dangerous when the domain transition is into a more privileged domain.

The dyntransition permission is similar to the transition permission but controls the ability to change
the domain type on a process at any time, [4] not just when executing an application. This permission
is much more dangerous than the transition permission because it allows the starting domain to
always execute arbitrary code in the new domain. For this reason, the dyntransition permission can
safely be used only to transition to a domain with a strict subset of the access of the starting domain.
Otherwise, the perceived protection of the domain change is false, and any access granted to the
target domain must be assumed to be accessible to the starting domain.

[4] The only limitation to when dynamic context transitions can occur is that they cannot occur while a process has more than one

thread running. This is to prevent a multithreaded process from having a different security context for each thread, which is an

even weaker domain separation than offered by the current dynamic context transition. You can find the discussion of dynamic

context transitions that occurred when it was introduced into SELinux at www.nsa.gov/selinux/list-archive/0411/9364.cfm.

Included is information about multithreaded applications and dynamic context transitions.

Warning

The ability to change the process domain type arbitrarily using the dyntransition
permission for process object class breaks the important property of label tranquility. In



SELinux, label tranquality simply means that in a running system, after an object is
created, its type will not change. Although there always exists a need for trusted operating
system components to occasionally change types of objects, SELinux has traditionally
tightly controlled type changes for processes with the domain transition concept. The
introduction of dyntransition permission breaks this property, which greatly complicates
any security analysis of the policy. We highly recommend that you never use this
permission unless you are writing userspace object managers or other SELinux extensions.

The setcurrent permission for the dyntransition permission is analogous to the setexec permission
for the transition permission. It controls the ability to request the change of the process domain
type. Successfully changing the domain type requires the dyntransition permission in addition to the
setcurrent permission. Like setexec, the request is made by writing to a special file in the proc
filesystem. This procedure is abstracted in the setcon(3) library function.

4.4.2.3. File Creation

Like domain transitions, the setting of the security context of file-related objects created by a process
can either be automatic, through inheritance or type_transition rules, or explicit. A program
explicitly sets the context for file-related objects by writing to special files in the proc filesystem. This
procedure is abstracted in the setfscreatecon(3) library call. The setfscreate permission controls
the ability to make this explicit request. Like setexeccon, the ability to see the current state of the
filesystem object context request is controlled by the gettattr permission.

4.4.2.4. Process Signaling

The ability to signal processes can be powerful because it potentially allows for the termination or
stopping of processes. In addition, signaling can be used to transfer information between two
processes. The sigchld, sigkill, and sigstop permissions control the ability to send the SIGCHLD,
SIGKILL, and SIGSTOP signals, respectively. The signull permission controls the ability to send a null
signal, for example, by passing 0 as the signal argument for the kill(2) system call. Finally, the
signal permission controls the ability to send all other signals.

There are a couple reasons why some signals have an explicit permission defined and the rest are
grouped under the general signal permission. Two signal, SIGKILL and SIGSTOP, were given an
explicit permission because they cannot be blocked by a process. The SIGCHLD signal has its own
permission primarily because it is used pervasively (for example, often from every process to init).
The rest have the same security properties, so they were grouped under the signal permission.

4.4.2.5. Process Attributes

The ability to query or set the scheduling priority and policy for a process is controlled by the
getsched and setsched permissions. Setting scheduling priority and policy, particularly setting the
SCHED_FIFO policy, with the sched_setscheduler(2) system call can allow a process to take up
possibly unlimited amounts of CPU time. This can be used to for denial-of-service attacks.

The process group and session identifiers control many aspects of a process' interaction with its



environment, including terminal handling and signal delivery. The getpgid and setpgid permissions
control the querying and setting of the process group identifier for the process. The getsession
permission controls querying of the session identifier.

The getcap and setcap permissions control querying and setting Linux capabilities for the process. To
successfully set a capability, the capability must also be allowed for the capability object class
labeled with the domain type of the process.

Resource limits, such as the maximum core dump size or CPU time, are set using the setrlimit(2)
system call. The setrlimit permission controls the ability to set hard resource limits.

4.4.2.6. Executing Writable Memory

As mentioned during the discussion of the execmod permission of the file object class, the ability to
execute writable segments of memory is a source of many security concerns. To help address these
concerns the execmem, execstack, and execheap permissions were created. They control the creation
of executable anonymous mappings, stacks, and heaps, respectively. The enforcement of the
permissions relies on additional software, such as ExecShield, [5] hardware features, such as NX. [6]

[5] ExecShield is a Red Hat-developed kernel patch to control memory execution and add other security features. It is included in

all Fedora releases and Red Hat Enterprise Linux since version 3. See www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf

for a description.

[6] NX is a hardware feature that accomplishes many of the same goals as ExecShield. A description is available at

http://en.wikipedia.org/wiki/NX_bit.

http://en.wikipedia.org/wiki/NX_bit


4.5. Exploring Object Classes with Apol

Apol offers a variety of features for browsing and querying object classes and permissions. Under the
Policy Components tab is the Classes/Perms tab, which allows browsing and searching all object
classes, common permissions, and unique permissions. Figure 4-1, shows apol with this tab
displayed. On the left are all the object classes, common permissions, and permissions. On the right
is an interface that enables you to search for object classes or permissions.

Figure 4-1. Apol displaying object classes, common permissions, and
permissions

[View full size image]

Double-clicking a policy component in the lists on the left displays detailed information about the
component. For example, double-clicking an object class displays its access vector; double-clicking a
permission displays all the object classes with which it is associated.

The search interface enables you to search for object classes or permissions using regular
expressions. For example, in Figure 4-1, we performed a search for all object classes that contain
"file" as part of their name. We did not set options to include the class-specific permissions or to
expand common permissions in the result. As you can see in the Search Results window, apol is
showing the object class file including the class-specific permissions and the expanded common



permissions. This is a convenient method to obtain a full list of the permissions associated with an
object class.

Most other features in apol that interact with object classes, including the rule searching and
automated analyses features, which allow filtering of results based on object classes and permissions.
For example, Figure 4-2 shows a search for rules referring to the object class file.

Figure 4-2. Apol displaying a search for rules with the object class file

[View full size image]



4.6. Summary

Object classes and permissions are the basis for access control in SELinux, both as part of the
policy language and for the access enforcement mechanism in the kernel.

Object classes represent system resources such as files, process, directories, and sockets. There
is a corresponding object class for every kind of system resource.

Permissions represent access to system resources. Each object class has a defined set of
permissions called an access vector.

Object classes are declared using the class declaration statement (class).

Permissions are associated with object classes using the access vector statement (also class).

Two types of permissions are defined in SELinux: common permissions and class-specific
permissions.

Common permissions are a set of permissions shared by more than one object class. They are
associated with the object classes as a group using the access vector statement.

SELinux provides object classes and permissions to accurately and comprehensively cover all
system resources. In FC4, this results in more than 40 object classes, reflecting the richness
and complexity of Linux.

Understanding all the object classes and permissions requires a detailed understanding of both
SELinux and Linux.

Allowing access to accomplish many tasks in Linux requires multiple permissions on one or more
object classes.

Appendix C has a complete reference of all object classes and permissions.



Exercises

1. Create a common permission set named socket with the permissions read, write, bind,
connect, and listen.

2. Associate the common permissions socket and the class-specific permissions connecto
and acceptfrom with the object class declared in Question 2.

3. Write an allow rule that allows the domain httpd_t to append to a file of type
httpd_log_t, but not write.

4. Write the necessary allow rules to allow the domain httpd_t to execute files of type
bin_t. Include the ability to request an explicit domain transition but not the ability to
execute without transition. Assume that the appropriate rules giving transition and
entrypoint are already present in the policy.
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The majority of a SELinux policy is made up of several rules that together we call the type
enforcement rules. These rules control allowed access, many aspects of default transition labeling,
auditing, and invariant assertion checking. In this chapter, we examine the type enforcement rules in
detail along with the statements to define and declare the types used by these rules.



5.1. Type Enforcement

The majority of a SELinux policy is a set of statements and rules that collectively define the type
enforcement (TE) policy. A well-defined, strict TE policy can contain tens of thousands of TE rules.
The large number of TE rules is not surprising because they express all the allowed access to
resources exposed by the Linux kernel. This means, for example, that every access attempt by every
process to every file succeeds only if there is at least one TE rule allowing that access. If we think
about the number of processes and resources on a modern Linux system, we will understand why TE
rules can be numerous. When we add the audit configuration and labeling controlled by TE rules, it is
not uncommon for a highly restrictive SELinux policy to contain tens of thousands of rules, although
smaller policies are also common. In Part III, we discuss methods for managing and building this
large set of rules; for now let's understand how the TE rules work.

The sheer number of TE rules can make understanding SELinux policies challenging, but the rules
themselves are not complex. There are a relatively few varieties, and they all fall into two basic
categories: access vector (AV) and type rules. We use AV rules to allow or audit access between two
types. We use the type rules to control default labeling decisions under certain circumstances.

As their name implies, TE rules operate on types, which are associated with all resources via a
security context. The policy language includes additional statements that allow us to define types and
related policy components.

An important concept of SELinux is that TE rules associate privileges and accesses with programs, not
users. All the SELinux policy language features we discuss in this chapter deal with the access of
subjects (normally running programs) to objects (files, dir, sockets, and so on). This focus on
programs for access control decisions is important and one of the primary benefits of SELinux. It
allows the SELinux policy author to make decisions about access based on the function and security
properties of programs in addition to the total access that a user needs to accomplish tasks. A
program can be restricted to the minimum access permissions required to function properly, so that
even if it malfunctions or has been exploited, the security of the system as a whole is not necessarily
compromised. For example, if the policy for a Web server prevents it from modifying the files it
displays, then even if the server is exploited, the TE policy can prevent the exploited server from
changing those files. This limits the threat of defacing a Web site through a vulnerability in the Web
server. The security of the system in this example is largely maintained even in the face of an
exploited application. Only the exploited application is affected, and it is limited to the access we
defined in the policy.

Users are not entirely ignored by SELinux. It is possible for the policy to specify multiple domain
types (and thus differing sets of privilege) for the same program based on the user who runs the
program. This allows for the concept of roles, which we discuss further in Chapter 6, "Roles and
Users." Nonetheless, the level of access control is still based on the program's domain type and not
the user's privileges.

The implications of the shift of focus from users to programs can hardly be understated; it allows us
to address some of the fundamental challenges in computer security. The benefits are clear, but it
does require thinking about access control in a way that is new to many people. As you read this
chapter, it will help if you keep the focus on program access in mind. Additionally, if you are uncertain



about the basic concepts of type enforcement, you should review Chapter 2, "Concepts," before
continuing. In this chapter, we provide the details necessary to enable you to write TE rules; we
assume that you understand the basic concepts of SELinux and type enforcement as discussed in
Chapter 2.



5.2. Types, Attributes, and Aliases

Types, as you might guess from the term type enforcement, are the basic building blocks for TE
rules. SELinux primarily uses types to determine what access is allowed. Attributes and aliases are
policy features that ease the management and use of types. We use attributes to refer to a group of
types with a single identifier. For the most part, the policy language allows us to use attributes in
place of types in TE rules. Aliases are a convenience mechanism that allows us to define alternate
names for a type. The alias identifier and the type identifier are treated identically as far as the policy
is concerned.

5.2.1. Declaring Types

We must explicitly declare a type identifier using the type statement before using it. SELinux has no
predefined types; we must explicitly declare them all. For example, suppose we want to declare a
type (httpd_t) we intend to use as the domain type for a Web server and another type
(http_user_content_t) we intend to apply to user data files that the Web server needs to access to
display their content. We make these declarations using the type statement. For example:

type httpd_t;
type http_user_content;

Once declared, we can use types in security contexts, TE rules, and other policy statements where
required. You can see the full syntax for the type statement in the sidebar on page 92.

Type Statement Syntax

You use the type statement to declare types and optionally, associated alias names and
attributes with the type. The full syntax for a type declaration is as follows:

type type_name [ alias alias_set ] [, attribute_set] ;



type_name An identifier for the type. The identifier can be any length and can
contain ASCII characters, numbers, an underscore (_), or a period
(.).

alias_set One or more alias identifiers. Alias identifiers have the same
naming restrictions as type identifiers. If more than one alias
identifier is specified, a space-separated list enclosed in braces ({
}) is used (for example, alias { aliasa_t aliasb_t }).

attribute_set One or more previously declared attribute identifiers. If more than
one attribute is specified, a comma-separated list is used (for
example, type bin_t, file_type, exec_type;).

Type statements are valid in monolithic policies, base loadable modules, and nonbase
loadable modules. They are not valid in conditional statements.

5.2.2. Types and Attributes

As you might imagine, a large, complex policy may have many hundreds or thousands of types to
represent all of the different resources on a system. The Fedora Core 4 (FC4) targeted policy, for
example, which is deliberately relatively small, declares more than 800 types. Combine this with the
fact that all access is denied unless explicitly allowed means that directly expressing all the allowed
access between types would be verbose. This is where attributes help in the policy language.
Attributes can be thought of in two ways: 1) as a property or characteristic of a type, or 2) as a
group of types. In either case, the mechanism is the same.

Suppose we want to allow a backup application to have read access to all files. We start by creating a
domain type of the backup application (backup_t) and giving that type allowed access to every type
associated with any file:

type backup_t;

allow backup_t httpd_user_content_t : file read;
allow backup_t shadow_t : file read;

# additional rules granting read access to every other type used with file objects

Here we give the domain type backup_t access to two file types: our httpd_user_content_t example
from earlier; and the type shadow_t, which we expect to be the type of the /etc/shadow file. Both are
on-disk files that a backup application must read.

To complete this example, we would have to write a rule for every other type used for any file.
Depending on how many of the hundreds of declared types are ever used with a file object, we would
need hundreds of allow rules to give the backup application the necessary access (one for each type).
Further, every time we add a file type to the policy, we would have to remember to add an allow rule
for backup_t. This is a tedious and error-prone process. Attributes makes this kind of "group access"
easier to specify. By defining an attribute that we associate with all the file types and then granting
access to that attribute (rather than the individual types), we can give backup_t the necessary access
with a single rule.



We declare attributes with the attribute statement, as follows:

attribute file_type;

This statement declares an attribute called file_type. Types and attributes share the same
namespace, so it is not possible to have a type and an attribute with the same name. Assuming that
we associated the attribute file_type with all appropriate types, we can then allow backup_t read
access to both of these files with a single allow rule:

allow backup_t file_type : file read;

Note

Whereas it is common to append a _t to all type names, the common convention for
attributes is to have no additional suffix added to the name. Because types and attributes
share the same name space, this makes it easier to recognize a type from an attribute
when writing and examining TE rules.

Now instead of hundreds of allow rules, we have a single rule that grants the same access. When
this policy is compiled, this rule will automatically be expanded to the hundred of rules necessary to
control access based on the various file types. More important, when we define a new type for files,
all we have to do is associate the new type with the file_type attribute and the domain type
backup_t will automatically be given read access.

The full syntax for the attribute statement can be seen in the following sidebar.

Attribute Statement Syntax

You use the attribute statement to declare attributes. The full syntax of the attribute
statement is as follows:

attribute attribute_name;

attribute_name An identifier for the attribute. The identifier can be any length and
can contain ASCII characters, numbers, an underscore (_), or a
period (.) . Attributes are in the same namespace as types and
aliases and therefore cannot have the same name as another type
or alias.



Attribute statements are valid in monolithic policies, base loadable modules, and non-
base loadable modules. They are not valid in conditional statements.

5.2.3. Associating Types and Attributes

So far, we discussed how to define types and attributes but not how to associate the two. Types are
most commonly associated with attributes when the types are declared using the type statement. For
example, we can associate the attribute file_type with the type httpd_user_content_t by changing
the type declaration to the following:

type httpd_user_content_t, file_type;

The common way to describe this declaration is that the type httpd_user_content_t has the
file_type attribute. Mechanically, this statement adds the type httpd_user_content_t to the group of
types that "have" the file_type attribute, but conceptually it also changes the nature of the
httpd_user_content_t type such that it now "has" access permissions based on an attribute, and not
just on permissions granted to the type itself.

Just as httpd_user_content_t comes to represent files served by the Web server through use,
attributes gain meaning through consistent use. In this example, we are creating an attribute,
file_type, which means all file types used on permanent storage. Thus, we as policy writers can
write rules for access to "all files" without having to explicitly address each and every file type.

Types are not limited to one attribute, and in normal use it is common for a type to have several
associated attributes. For example, we can create the attribute httpdcontent for all files intended to
be available through the Web server. The types that have the httpdcontent attribute would likely be
a subset of the types with the file_type attribute. To extend our earlier example, let's look at the
following statements:

type httpd_user_content_t, file_type, httpdcontent;
type shadow_t, file_type;

allow backup_t file_type : file read;
allow httpd_t httpdcontent : file read;

We have now added two attributes to the http_user_content_t type, file_type (indicating this is a
type of an on-disk file) and httpdcontent (indicating that this type is to be read by the Web server).
For the more privileged type shadow_t, we associated only the attribute file_type (because allowing
the Web server to display the shadow password file does not seem like a good idea!). We also have
two allow rules giving the Web server and the backup program the access they need for the types
associated with each attribute. The result is that the Web server (httpd_t) can read all files with the
httpdcontent attribute but not other files such as shadow_t. On the other hand, the backup
application (backup_t) can read all files that have the file_type attribute.

No practical limit applies to the number of attributes that a type can have and, just as with types, we
can define as many or as few attributes as we want within reason.



Note

At the time of this writing, the coded limit to the number of types and attributes we may
define is 232 identifiers. This is the size limit supported by the version of SELinux released
with Red Hat Enterprise Linux, version 4 (RHEL4). By the time this book is published, that
size will likely be changed to 216 identifiers (due to a significant optimization of SELinux
memory usage). However, in practical terms, the number of types we can define is
probably at most a few thousand (because the number of associated TE rules would likely
become unwieldy). So, even the most complicated policy we have seen has had fewer than
two thousand types and attributes declared.

In addition to associating attributes with types using the type statements, we can associate attributes
to types using the typeattribute statement. This statement allows us to associate attributes to types
separately from their declaration, potentially in another part of the policy that is in a separate file. For
example, take our type statement for http_user_content_t from above:

type httpd_user_content_t, file_type, httpdcontent;

The following type and typeattribute statements are equivalent to the single type statement:

# The following two statements...
type httpd_user_content_t;
typeattribute httpd_user_content_t file_type, httpdcontent;

# are equivalent to the following single statement.
type httpd_user_content_t, file_type, httpdcontent;

Tip

For the first time, we used a comment in our policy statement. For the policy compiler, the
pound symbol (#) indicates a comment. All text following the pound symbol to the end of
the line is ignored by the compiler.

It may not be clear from this example why the typeattribute statement is needed, but as you read
in later chapters, the flexibility given by this statement will become clear. Basically, this statement
allows us define a type in one place and associate attributes in another, increasing the language
flexibility and allowing stronger modularity in the design of policy source files.

The full syntax for the typeattribute statement can be seen on page 97.



Warning

Attributes are a convenient feature of the policy language, but they can be dangerous.
Associating an attribute with a type can potentially allow a large amount of access to that
type. This access may or may not be appropriate; it depends on our security goals. For
example, associating a domain type with an attribute will likely give that type a large
amount of access, the impact of which you may not fully understand. This is often similar to
granting a process a powerful privilege. You should be certain that the access for the
attribute is warranted for the associated type and be careful about the impacts of future TE
rules that reference that attribute.

Typeattribute Statement Syntax

The typeattribute statement allows you to associate previously declared type and
attributes. You can use this statement to associate an attribute with a type when the
association is not done as part of the type declaration. The full syntax for the
typeattribute statement is as follows:

typeattribute type_name attrib_names;

type_name The name of the type to which to add the attributes. The type must
be declared separately using a type statement and only one type
may be specified.

attrib_names One or more previously declared attribute identifiers. If more than
one attribute is specified, a comma-separated list is used (for
example, typeattribute bin_t file_type, exec_type;).

Typeattribute statements are valid in monolithic policies, base loadable modules, and
non-base loadable modules. They are not valid in conditional statements.

5.2.4. Aliases

Aliases are alternate names used to refer to a type. We can use an alias anywhere that we would use
a type name, including TE rules, security contexts, and labeling statements. Aliases are typically used
for compatibility when making policy changes. For example, an older policy might refer to the type
netscape_t. An updated policy might switch to the type name to mozilla_t, but provide netscape_t
as an alias to allow older modules to correctly compile.

We declare aliases in one of two ways. The first method is as part of the type declaration using the
type statement. We can declare the type mozilla_t with the alias netscape_t by using the alias
keyword in the type statement, as follows:



type mozilla_t alias netscape_t, domain;

Notice that the alias declaration comes before the attributes for the type.

We can also declare aliases separately from the type declaration using the typealias statement. The
following statements are equivalent to the single type statement above:

# These two statements are equivalent...
type mozilla_t, domain;
typealias mozilla_t alias netscape_t;

# to the following single statement.
type mozilla_t alias netscape_t, domain;

The typealias statement is useful when the structure of the policy makes it difficult to declare the
alias as part of the type declaration. We can see the full syntax for aliases as part of type statements
in the sidebar on page 92 and the full syntax for typealias in the sidebar on page 98.

Typealias Statement Syntax

The typealias statement allows you define an alias name for a type. This is an
alternative method to defining the alias as part of the type declaration using the type
statement. The full syntax for the typealias statement is as follows:

typealias type_name alias alias_names;

type_name The name of the type to which to add the aliases. Types must be
declared separately using the type statement, and only one type
may be specified.

alias_names One or more alias identifiers. Alias identifiers have the same
naming restrictions as type identifiers. If more than one alias
identifier is specified, a space-separated list enclosed in braces ({
}) is used (for example, { aliasa_t aliasb_t }).

Typealias statements are valid in monolithic policies, base loadable modules, and non-
base loadable modules. They are not valid in conditional statements.



Domain Types and Other Kinds of Types

In Chapter 2, you learned that types used on processes are sometimes called "domain
types." Throughout this book, we also often use other adjectives in front of the word
type, such as "file type" and "directory type." All these adjectives simply refer to the way
that the types are used and do not reflect any special treatment of the type in the policy
language. A file type, for example, is simply a way to refer to a type used as part of the
security context for files. In reality, the type could be used for other object classes, too;
there is nothing intrinsic to the language that makes a type a file type or a domain type.
All the types in SELinux are exactly the same and can be used to label any object class
instance if the appropriate access is present.

This means, for example, that a domain type such as httpd_t could be used on both a
process and a file with the addition of a few rules. Traditionally, this dual use has been
avoided in SELinux policies, mainly for clarity. But, in some circumstances, we have used
a type as both a domain type and a file type. The distinction is completely up to the
policy writer.

In the case of domain types, however, there are some technical reasons to not use these
types for files and directories. In Linux, every process has files and directories
automatically created in /proc/ by the kernel. These objects are used to get and set
properties about these processes. In SELinux, the type of the process is automatically
used for these files and directories. That would mean that for a process with type
httpd_t, if the process ID (PID) of the process were 1000, the directory /proc/1000/ and
all of its files and directories would also have the type httpd_t. If the type httpd_t was
also used for regular files, that would mean that granting access for other domain types
to regular files of type httpd_t would also grant access to the files and directories in
/proc/, with potentially unwanted side effects.



5.3. Access Vector Rules

AV rules are those rules that specify their meaning in terms of access permissions[1] for object
classes. The SELinux policy language currently supports four types of AV rules:

[1] In the code, the set of permissions for an object class are represented by a bit mask called an access vector, hence the term

access vector rule.

allow Specifies access allowed between two types

dontaudit Specifies access denial messages to not record

auditallow Specified access allowed events to record

neverallow Specifies access permissions that may never be granted by any
allow rule

We examine each of these rules, their common and unique syntax and semantics, and examples of
their usage in the remainder of this section. The common syntax for all AV rules is shown in the
sidebar on page 107.

5.3.1. Common AV Rule Syntax

Although each of these AV rules has a different purpose, they all have the same basic syntax. Each
rule contains five elements:

• Rule name allow, dontaudit, auditallow, or neverallow

• Source type(s) The type(s) being granted access, usually the domain type of a
process attempting access

•Target type(s) The type(s) of an object to which the source is being granted
access

•Object class(es) The class(es) of object(s) that the specified access is permitted

• Permission(s) The specific access permissions that the source is allowed to
the target type for the indicated object classes (also called the
access vector)

A simple AV rule has one source type, target type, object class, and permission. We have seen many
examples of such AV rules in our earlier allow rule examples, such as the following:

allow user_t bin_t : file execute;



This allow rule has the source type user_t, target type bin_t, object class file, and permission
execute. This rule is commonly read as "allow user_t to execute files of type bin_t."

All four AV rules have exactly the same syntax with a different rule name keyword. For example, we
could convert the previous example into an auditallow rule by simply replacing the rule name:

auditallow user_t bin_t : file execute;

We will discuss the meaning of this rule later; what is important at the moment is to understand that
the syntax is exactly the same.

5.3.1.1. AV Rule Keys

Within the kernel, all the AV rules are uniquely identified by a triplet of source type, target type, and
object class. This triplet is called a key for its use as a hash table and cache key within the policy data
structures. Recall from Chapter 3, "Architecture," that rules are stored and looked up by this key.
When a process makes an access attempt, the SELinux LSM module is queried for the allowed access
based on this key.

So, what happens when there is more than one AV rule with the same key (that is, same source
type, target type, and object class)? For example, consider a policy with the following rules:

allow user_t bin_t : file execute;
allow user_t bin_t : file read;

Are processes of type user_t allowed read or execute access to files of type bin_t? The answer is
both; all rules with the same key are combined by checkpolicy. The compiled policy will contain a
single rule with both the execute and read permissions, and both will be allowed by the security
server. All the AV rules are additive in this way.

Warning

Each subsequent AV rule in a policy that has the same keys as a previous AV rule adds
permissions to the ultimate rule compiled into the policy. There is no concept of removing
permissions granted by another rule. So be careful; although you might have written a nice
tight rule in one part of the policy, another rule elsewhere in a policy (possibly for an
attribute that is associated with your type) might grant additional permissions.

5.3.1.2. Using Attributes in AV Rules

Although the AV rules that we have seen so far have been simple, the syntax supports many ways to
list types, object classes, and permissions, giving us flexibility and often making the rule statements
more concise.



In the simple form of the rules in the previous examples, the rules have referred directly to the
source type (user_t) and the target type (bin_t). It is often convenient, however, to refer to multiple
types in the source or target of the rules. One way to refer to multiple types is to use attributes. We
can use an attribute anywhere we can use a type in AV rules.

For example, suppose we defined an attribute (exec_type) that we plan to associate with all file types
that an ordinary user program (indicated by the domain type user_t) may execute. Now we can
change our above example to refer to the attribute exec_type rather than an explicit type such as
bin_t, as shown here:

allow user_t exec_type : file execute;

Unlike the previous example, this rule does not directly reflect what will be enforced by the kernel.
Rules that include attributes will be expanded within the kernel into a separate key for each type
associated with the attribute. If there were 20 file types associated with the attribute exec_type, for
example, the kernel AVC may end up with 20 keys and associated rules, each one granting execute
access for file object class to the type user_t for each of the 20 file types associated with the
attribute exec_type.

We can also use attributes as the source of an AV rule, or for both the source and target of the rule.
For example, suppose we also created an attribute (domain) that we associated with all domain types
(including user_t), and that we want to allow all domain types the ability to execute file types that
have the attribute file_type. We can achieve this goal with a single rule:

allow domain exec_type : file execute;

To better illustrate the rule expansion concept, suppose that our policy associated the domain
attribute with the types user_t and staff_t, and the exec_type attribute with the file types bin_t,
local_bin_t, and sbin_t. Thus, the single rule above would be the equivalent to the following explicit
rules:

allow user_t bin_t : file execute;
allow user_t local_bin_t : file execute;
allow user_t sbin_t : file execute;
allow staff_t bin_t : file execute;
allow staff_t local_bin_t : file execute;
allow staff_t sbin_t : file execute;

5.3.1.3. Multiple Types and Attributes in AV Rules

We are not limited to a single type or attribute for the source and target fields. Rather, we can also
list multiple types or attributes as source and target. When there is more than one type or attribute,
a space-separated list enclosed in braces is used, as follows:

allow user_t { bin_t sbin_t } : file execute;

In this rule, the target is both bin_t and sbin_t. Rules with multiple types or attributes in the source



or target are expanded in the same ways as single attributes. In the previous example, the kernel
policy would contain two keys, one each for the type target types.

We can mix types and attributes for either source or target fields, or both. For example, the following
rule is perfectly legal:

allow {user_t domain} {bin_t file_type sbin_t} : file execute ;

It is fine if we explicitly list a type and an attribute that the type has. In this case, we have essentially
listed the type twice. The kernel will resolve the redundancy and include only one instance of the rule
for each combination of source and target types.

5.3.1.4. The Special Type self

The policy language has a reserved word self that acts like a type when used in the target field of an
AV rule. For example, the following two rules are equivalent:

# These two rules are equivalent to each other
allow user_t user_t : process signal;
allow user_t self : process signal;

The keyword self simply means to instantiate a rule for each source type, so that the source and
target are the same. In the preceding example, the second rule just creates a key with the source
and target both user_t.

Let's look at a slightly more complicated example:

allow {user_t staff_t} self : process signal;

In this example, the rule creates two rules, one each for each source type. This rule is exactly
equivalent to the following two rules:

# These two rules...
allow user_t user_t : process signal;
allow staff_t staff_t : process signal;

# are equivalent to the following single rule.
allow {user_t staff_t} self : process signal;

Notice that when using self, the equivalent rules are created only for each source type and
themselves. In particular, user_t is given no access to staff_t and vice versa.

Note



You may use only the special type self in the target field of AV rules. In particular, you
cannot use self as the source of an AV rule or in a type rule. Further, you cannot declare a
type or attribute with self as its identifier.

The use of self is particularly valuable when using attributes or large lists of types and attributes as
the source of an AV rule. For example, suppose we want every domain to be able to signal itself. We
might want to write a rule such as this:

allow domain domain : process signal; # Not what we really want

Although this rule provides the desired access (every domain type would be able to signal itself), it
would also allow every domain type to signal every other domain type. This unintended effect could
be a security disaster. By using the self keyword, we can ensure that each domain type only gets
access to itself, as follows:

allow domain self : process signal; # This is what we intended

5.3.1.5. The Negation Special Operator

The final syntax for types in AV rules is type negation. This syntax is useful for removing a type from
a list of types and is most commonly used to remove a type from an attribute in a given rule. This is
done by prepending the negation operator, -, to the beginning of the type name. For example, we
could allow all domain types to execute all file types with the exec_type attribute except for sbin_t
with the following rule:

allow domain { exec_type -sbin_t } : file execute;

This rule would expand as if the exec_type attribute did not contain the type sbin_t for this one rule.

Type negation is not order dependent; if a type is subtracted, it will not be expanded even if it comes
before the attribute was listed. The following, for example, is semantically equivalent to the preceding
example:

allow domain { -sbin_t exec_type } : file execute;

5.3.1.6. Specifying Object Classes and Permissions in AV Rules

AV rules can also contain lists of object classes and permissions. The syntax is, as with types, a
space-separated list enclosed in braces, as follows:

allow user_t bin_t : { file dir } { read getattr };

This rule would result in two keys, one for each object class, just as with source or target types. This
preceding rule is exactly equivalent to the following two rules:



# These two rules...
allow user_t bin_t : file { read getattr };
allow user_t bin_t : dir { read getattr };

# are equivalent to the following single rule.
allow user_t bin_t : { file dir } { read getattr };

Notice that the object classes are expanded, but each rule has the same list of permissions. This
means that all the listed permissions must be valid for all the object classes. We will sometimes have
to create two distinct rules with the same source and target types but different object classes
because the permission lists are not valid for all classes. For example, if we look at the permissions
for file and dir object class, we will notice that many of them are the same, but some are not. (The
permissions valid for both are a result of the use of common permissions, as discussed in Chapter 4,
"Object Classes and Permissions.")

Suppose, for example, we want to write a rule to give a form of "read" access for both object classes.
The following rule is not valid:

# An invalid rule because search is not valid for the object class file
allow user_t bin_t : { file dir } { read getattr search };

Although read and getattr are common permissions for both dir and file object classes, the search
permission is valid only for dir object class. Because checkpolicy cannot create a key that gives file
class an invalid permission (search), we would get an error when trying to compile a policy with this
rule. Our only recourse in this case is to create two rules, such as these:

# Two rules are needed when permissions are not valid for
# both object classes
allow user_t bin_t : file { read getattr };
allow user_t bin_t : dir { read getattr search } ;

5.3.1.7. Special Permission Operators for AV Rules

We can use two special operators for listing permissions in AV rules. The first special operator is a
wildcard operator (*). The wildcard operator includes all permissions for an object class:

allow user_t bin_t : { file dir } *;

This rule will expand into all of the permissions for file and dir.

The wildcard operator syntax differs subtly from explicitly listing all the permissions for the object
classes. With the wildcard operator, all permissions are included for each object class individually,
regardless of whether they are valid for all the object classes. This makes it possible to use the
wildcard operator in rules with multiple object classes, even if those object classes have different
permissions. So, for example, the above rule would safely handle the permissions that are only valid
for dir object class and not file class, unlike the earlier example.



The second special operator makes it possible to include all the permissions not listed using the
complement operator (~):

allow user_t bin_t : file ~{ write setattr ioctl };

When compiled, this rule allows all the permissions for the file object class except write, setattr,
and ioctl. Similar to the wildcard operator, complement expands the permission lists individually for
each listed object class.

Warning

Be advised that the proper and allowed use of all three special operators (negation,
wildcard, and complement) has evolved and changed over the past few years. Many recent
versions of checkpolicy will allow these operators to be used in places other than those
listed here. For example, checkpolicy versions, including that released with RHEL4, allow
the wildcard operator (*) to be used for types.

Recent improvements to the compiler have tightened the allowed use for these operators to
be consistent with the rules previously discussed. The primary exception is that the
wildcard operator may be used for types in neverallow rules, but no other TE rule. In
general, if you use these operators as discussed herein, you will be safe.

Common Access Vector Rule Syntax

The full common syntax for AV rules is as follows:

rule_name  type_set  type_set : class_set  perm_set ;



rule_name The name of the access vector rule. Valid rule names are allow,
auditallow, auditdeny, dontaudit, or neverallow.

type_set One or more types and/or attributes. There is a separate type_set
for the source and target types of the rules. Multiple types and
attributes are specified using a space-separated list enclosed in
braces ({ })for example, { bin_t sbin_t }. Types can be excluded
from the list by prepending - to the type name (for example, {
exec_type -sbin_t }). The keyword self can be used in the target
type field either alone or as part of a list of types and attributes.
Self cannot be used in the source type field. Neverallow rules also
support the wildcard operator (*) to include all types and the
complement operator (~) to include all types except those explicitly
listed.

class_set One or more object classes. Multiple object classes must be
enclosed in braces ({ })for example, { file lnk_file }.

perm_set One or more permission. All permissions must be valid for all object
classes in the class_set. Multiple permissions must be enclosed in
braces ({ })for example, {read create}. The wildcard operator (*)
is used to specify all permissions for all object classes. The
complement operator (~) is used to specify all permissions except
those explicitly listed.

All AV rules are valid in monolithic policies, base loadable modules, and nonbase loadable
modules. All AV rules except auditdeny and neverallow rules are valid in conditional
statements.

5.3.2. Allow Rules

By now you have seen many examples of allow rules in this and previous chapters. The allow rule is
the most common rule in a policy and implements the primary purpose of an SELinux policy (that is,
to allow access).

As discussed, we use allow rules to specify all permissions that will be granted at runtime. They are
the only means to allow permissions in an SELinux policy. Remember, no access is allowed by
default. We specify access between two lists of types, the source and target, in terms of permissions
for the listed object classes, as follows:

allow user_t bin_t : file { read execute };

This rule allows any process whose security context has the type user_t to have read and execute
permissions to any ordinary file whose security context has the type bin_t. Allow rules share all of
the common AV rules syntax and do not have any additional syntax.

If this example were the only allow rule in our policy with this source type, target type, and object
class, no other access would be granted to files with the type of bin_t. For example, user_t would



not be able to write files of type bin_t.

Allow rules, like all AV rules, are cumulative and the actual access allowed for a given subject-target-
class key is the union of all the allow rules that refer to that key. For example, these two sets of
rules are equivalent:

# These two rules...
allow user_t bin_t : file read;
allow user_t bin_t : file write;
# are equivalent to (and redundant with) this single rule.
allow user_t bin_t : file { read write );

5.3.3. Audit Rules

SELinux has extensive facilities for logging, or auditing, access attempts that are either allowed or
denied by the policy. The audit messages, often called "AVC messages," give detailed information
about an access attempt, including whether it was allowed or denied, the security context of the
source and target, and other details about the resources involved in the access attempt. The
messages, which are similar to other kernel messages and are usually stored in log files under
/var/log, are an indispensable tool for policy development, system administration, and system
monitoring. In this chapter, we examine the policy features that enable us to configure which access
attempts will generate audit messages. Part III provides more information about how to use audit
messages to debug and understand policies.

By default, SELinux does not record any access checks that are allowed but records all access checks
that are denied. These defaults are not surprising; on most systems, thousands of accesses per
second are allowed, but few accesses are denied. The allowed accesses are, by the fact that they
were allowed, expected and usually do not require auditing. The denied accesses are usually, but not
always, unexpected, and auditing them helps an administrator to monitor for policy bugs and/or
possible intrusion attempts. The policy language allows us to override portions of these defaults to
suppress audit messages for expected access denials and to generate audit messages for access
attempts that were allowed.

SELinux provides two AV rules that allow us to control which access attempts are audited: dontaudit
and auditallow. These two rules are the policy mechanism that enable us to change these auditing
defaults. The dontaudit rule is the most commonly used. It specifies which access denials should not
be audited, overriding the SELinux default behavior to audit all access denials.

Warning

Access denials are audited only if the denial was made by SELinux. Recall from Chapter 3
that LSM module hook functions are usually called only if the access passes the standard
Linux discretionary access control checks. This means that if an access was denied because
of the standard Linux access checks, SELinux is not even aware of the access attempt and
cannot generate an audit message. If you need to audit all denied accesses regardless of
why the access is denied, you must directly use the kernel audit system included in the
2.6.x series of kernels. See the man pages for auditd(8) and auditctl(8).



For example, consider this:

dontaudit httpd_t etc_t : dir search;

This rule specifies that when processes of type httpd_t are denied search permission on directories of
type etc_t, the denial should not be audited, overriding the default behavior. We might write this rule
if processes with type httpd_t attempt to search directories of type etc_t (presumably /etc/) but
function properly when this access is not granted. You will find Linux/UNIX applications often exhibit
this type of behavior; that is, they attempt access they do not need yet work fine when the access is
denied.

The dontaudit rule is useful when we want to mask audit denial messages that are expected, usually
due to expected behavior of an application. The dontaudit rule allows us to avoid granting
unnecessary access (because the application works without the access, it is unnecessary by any
definition) without a large number of expected audit messages filling the system logs. As we said, this
type of behavior is all too common.

Auditdeny Rule

Earlier versions of SELinux supported an auditdeny rule. These rules were used for a
similar purpose to the dontaudit rules. Although still supported by the policy language, an
auditdeny rule is seldom, if ever, seen in policies. The rule is deprecated, and we suggest
you do not attempt to use it. The dontaudit rule, coupled with the default behavior of
recording all access denials, is the desired method for controlling access denial auditing.

The other audit rule, auditallow, allows us to control the auditing of allowed access attempts. Unlike
denied access, allowed access is not recorded by default. For example, let's look at the following rule:

auditallow domain shadow_t : file write;

This rules specifies that when a process with a type that has the domain attribute successfully obtains
write access to files of type shadow_t, the allowed access is audited. The auditallow rule is useful to
audit accesses that are an important security event. Examples of access that are likely to have an
auditallow rule include writing to the shadow password file (as the above rule does) or reloading a
new policy into the kernel.

Remember, audit rules let us override the default auditing settings. The allow rule specifies which
access is allowed. The auditallow rule does not allow access; it enables only auditing of allowed
permissions.



Note

Auditing is different in permissive and enforcing modes. When running in enforcing mode,
audit messages are generated every time there is an allowed or denied access that the
policy states should be audited up to a rate limit (this can be set with auditctl(8)). In
permissive mode, only the first access attempt is logged until the next policy load or toggle
of the enforcing mode. Permissive mode is most often used for policy development, and this
auditing mode helps reduce the size of the log.

5.3.4. Neverallow Rules

The final AV rule is the neverallow rule. We use this rule to state invariant properties specifying
certain accesses that may never be permitted by an allow rule. You might wonder why this rule
exists, because access is denied by default. The reason is to aid policy writing by noting certain
undesired permissions, thereby preventing the accidental inclusion of these permissions in our policy.
Recall that an SELinux policy is likely to contain tens of thousands of rules. It is quite possible to
accidentally grant an access we did not want to grant. The neverallow rule helps prevent this
situation. For example, consider this rule:

neverallow user_t shadow_t : file write;

This neverallow rule would prevent us from adding a rule to the policy that allows user_t to write to
files of type shadow_t by generating a compile error. This rule does not remove access, it just
generates compile errors. The neverallow rule is to state important properties about our policy before
we start writing allow rules. The neverallow rules prevent us from inadvertently including
permissions that we did not intend.

The neverallow rule supports some additional syntax that the other AV rules do not. In particular, the
source and target type lists in neverallow rules can contain the wildcard (*) and complement (~)
operators. These operators work just as they do for permission lists in the rest of the AV rules (see
the section "Special Permission Operators for AV Rules," earlier in this chapter).

For example, look at the following rule:

neverallow * domain : dir ~{ read getattr };

This rule states that no allow rule may grant any type any access except read and getattr access
(that is, "read access") to directories labeled with one of the types associated with the domain
attributes. The wildcard operator in this rule means all types. A neverallow rule similar to this is
commonly found in policies and is used to prevent inappropriate access to directories in /proc/ that
store process information (which will be labeled with the same type as processes).

We can see from the preceding example that the wildcard operator is needed in the source type lists
for neverallow rules because we are referring to any and all types, including those not yet created.
The wildcard operator allows us to prevent future mistakes.

Another common neverallow rule is this:



neverallow domain ~domain : process transition;

This neverallow rule reinforces the concept of the domain attribute described earlier in this chapter.
This rule states that a process cannot transition to a type that does not have the domain attribute.
This makes it impossible to create a valid policy with a type intended for a process that does not have
the domain attribute.

Loadable Module Dependency Handling

Loadable policy modules, which are a new feature in Fedora Core 5 (FC5), contain
language features for handling dependencies between modules. The dependency
handling features ensure that the policy components (that is, identifiers) a module
expects are present at module installation time. See Chapter 13, "Managing an SELinux
System," for more information about how loadable policy modules are installed and
managed. Possible policy component dependencies include object classes, permissions,
users, roles, types or aliases, attributes, and Boolean identifiers.

The require statement states the policy components required for a loadable module. All
policy components that are not declared in the module must be required in some form.
For example, consider the following require statement:

require { type etc_t; }

The example above states that the loadable module in which it appears requires the type
etc_t to be declared elsewhere in the policy (that is, in the base module or other
loadable modules). This require statement allows the type etc_t to appear in policy rules
within the module without being explicitly declared. Following is a more complete
example showing a more require statement, type declaration, and an example allow
rule:

require {
       attribute domain;
       type etc_t;
       class file { read getattr };
}
type httpd_t, domain;
allow httpd_t etc_t : file { read getattr };

As you can see, every policy component used in the example allow rule was either
declared or required before it was used. For example, the domain attribute was required
before it was used in the httpd_t type declaration. Obviously, many require statements
would be needed for a loadable module of any complexity. In Chapter 12, "Reference
Policy," we discuss how the reference policy automates the generation of require
statements.

We use the require statement to state unconditional requirements that must be present



in the policy for the loadable module to be installed. The optional statement is used to
state requirements that may or may not be present. This allows the policy author to add
rules based on whether policy components are present. For example, consider the
following optional statement:

optional {
          require { type user_home_t; }
          allow httpd_t user_home_t : file read;
}

This statement allows processes with the type httpd_t to read files with the type
user_home_t if that type is present. As you can see, the optional statement wraps
standard policy statements, including require statements. Whenever modules are added
or removed from the system, all the optional dependencies are checked and enabled or
disabled as appropriate.

The full syntax of the require statement is as follows:

require { require_list }

require_list One or more semicolon-separated require declarations. A require
declaration consists of an identifier for the variety of policy
component followed by the name of the policy component. Valid
policy component variety identifiers are class, user, role, type,
attribute, and bool. For users, roles, types, attributes, and
Booleans, only a single name may be listed (for example, type
httpd_t;). For object classes, both the object classes and one or
more permissions is listed (for example, class file { read write
};).

Require statements not a part of an optional statement are valid only in nonbase
loadable modules. They are not valid in a base module or in any conditional statements.

The full syntax for the optional statement is as follows:

optional { rule_list }

rule_list One or more policy statements that are enabled if all the required
statements in the optional statement are satisfied. Valid policy
statements are user, role, type, attribute, and alias declarations
and TE and RBAC rules (including conditional statements).

Optional statements are valid only in base and non-base loadable policy modules. They
are not valid in conditional statements.





5.4. Type Rules

Type rules specify default types for objects created or relabeled at runtime. We have already seen
one example of this in Chapter 2 in the form of default domain transitions using the type_transition
rule. There are two type rules defined in the policy language:

type_transition Specifies default type labeling behavior for domain transition and object
creation

type_change Specifies default types for relabeling performed by SELinux-aware
applications

We call these rules "type rules" because they are similar to AV rules except that the last field in the
rule is a type name rather than a list of permissions.

5.4.1. Common Type Rule Syntax

As with AV rules, each of the type rules has a different purpose and semantics, but they all share
common syntax. Each type rule has five elements:

• Rule name type_transition or type_change

• Source type(s) The type(s) of the creating or owning process

• Target type(s) The type(s) of the object containing the new or relabeled object

• Object
class(es)

The class(es) of object(s) being created or relabeled

• Default type The single default type for the new or relabeled object

The full syntax for the type rules is in the sidebar on page 117.

Much of the type rule syntax is similar to AV rules, but there are important differences. First, there
are no permissions. Unlike AV rules, type rules do not specify access or auditing, so there is no need
for permissions. The second major difference is that the object class is not associated with the target
types. Instead, the object class refers to the objects that will be labeled with the default type.

The simplest form of a type rule has one source, target, and default types, and one object class, as
follows:

type_transition user_t passwd_exec_t : process passwd_t;



This rule, which you saw in Chapter 2, specifies that when a process of type user_t executes a file of
type passwd_exec_t, the process type will attempt to transition, by default, to passwd_t unless
otherwise requested. The target type is implicitly associated with the file object class when the
stated object class is process. The stated object class (process) is associated with the source and
default types. This subtle and implicit association is easy to overlook, even after you become an
experienced policy writer.

As with AV rules, we can specify more than one object class by using a space-separated list enclosed
in braces. Likewise, we can use attributes, and lists of types and attributes in type rules, as follows:

type_transition { user_t sysadm_t } passwd_exec_t : process passwd_t;

This type_transition rule includes two types, user_t and sysadm_t, in the source list. As with AV
rules, this rule would be expanded into two rules. The preceding rule has the exact same meaning as
the following two rules:

# These two rules...
type_transition user_t passwd_exec_t : process passwd_t;
type_transition sysadm_t passwd_exec_t : process passwd_t;

# are equivalent to this single rule.
type_transition { user_t sysadm_t } passwd_exec_t : process passwd_t;

The use of attributes also works the same as in AV rules.

Unlike source and target type fields, attributes and/or multiple types cannot be used for the default
type. The reason for this restriction is clear when you understand the purpose of this rule (that is, to
specify a single default type). If we could list more than one default type, the rule would be
ambiguous and it would be impossible for the kernel to determine which default type to use.

The restriction for a single default type also means that we cannot have two separate type rules that
have the same source, target, and object class, as this would be semantically equivalent to two
default types. For example, the following two rules would conflict:

# These two rules conflict and will cause a compile-time problem
type_transition user_t passwd_exec_t : process passwd_t;
type_transition user_t passwd_exec_t : process user_passwd_t;

The policy compiler generates an error if both of these rules are present in a policy. These conflicting
type_transition rules also make the reason for the restriction clear. If both rules were present,
which type, passwd_t or user_passwd_t, would be used for the default type?



Common Type Rule Syntax

The full common syntax for type rules is as follows:

rule_name  type_set  type_set : class_set  default_type;

rule_name The name of the type rule. Valid rule names are type_transition,
type_change, and type_member.

type_set One or more types or attributes. There is a separate type_set for
each of the source and target types of the rules. Multiple types and
attributes are specified using a space-separated list enclosed in
braces ({ })for example, { bin_t sbin_t }. Types can be excluded
from the list by prepending - to the type name (for example, {
exec_type -sbin_t }).

class_set One or more object classes. Multiple object classes must be
enclosed in braces ({ })for example, { file lnk_file }.

default_type A single type that is the default for the newly created or relabeled
object. Attributes or multiple types cannot be used.

All type rules are valid in monolithic policies, base loadable modules, non-base loadable
modules, and conditional statements.

5.4.2. Type Transition Rules

We use type_transition rules to specify default type labeling rules for certain events. Currently,
there are two forms of the type_transition rule. The first supports default domain transition events,
which is the form of type_transition rule introduced in Chapter 2. The second form of this rule
supports object transitions, which allow us to specify default object labeling.

Both forms of the type_transition rule help make the enhanced security of SELinux transparent to
the Linux user. In SELinux, by default, newly created objects receive the type of their containing
object (for example, directory), and processes inherit the type of their parent process. The
type_transition rule enables us to override these defaults. This is useful, for example, to ensure that
when the password program creates a file in the /tmp/ directory, that its file is given a different type
than those of ordinary users.

The type_transition rule does not allow access; it provides only a new type labeling default. A
successful type transition always requires the associated set of allow rules that permit the process
type the ability to create the object and label the object as specified. In addition, the default labeling
specified in type_transition rules takes effect only if the creating process does not explicitly override
the default labeling behavior.



5.4.2.1. Default Domain Transitions

Let's examine the domain transition form of this rule in more detail. Domain transitions change the
type of a process when executing a file. For example, look at this rule:

type_transition init_t apache_exec_t : process apache_t;

This type_transition rule states that when processes of type init_t execute a file of type
apache_exec_t the process type should be changed to apache_t. The object class process is the only
indication that this is a domain transition form of the rule. Figure 5-1 shows a domain transition.
Domain transitions actually change the type of an existing process instead of labeling a newly created
process. This is because in Linux a new process is created by first making a copy of an existing
process using the fork() system call. If the process type were changed on fork, it would allow the
calling domain to execute arbitrary code in the new domain. It is much safer for the domain transition
to happen when executing a new program via the execve() system call.

Figure 5-1. A depiction of a default domain transition

Warning

Recent versions of SELinux introduced the process object class permission dyntransition.
This permission, which was added primarily for compatibility with other systems, allows a
process to change its domain type at request instead of just on execute. This type of
process transition is not safe because it allows the calling domain to execute arbitrary code
in the new domain, destroying the separation between the two domains. In addition, the
same functionality can often be achieved using other, safer mechanisms. We recommend
that you never use this permission in your policies unless you are building a userspace
object manager or if you are absolutely sure it is required.



As mentioned previously, a type transition can occur only if the policy allows the associated access.
For a domain transition to succeed, the policy must allow at least three accesses:

execute The source type (init_t) must have execute permission for files with the target type
(apache_exec_t).

transition The source domain (init_t) must have TRansition permission to the default type
(apache_t).

entrypoint The new (default) type (apache_t) must have entrypoint permission to files with the
target type (apache_exec_t).

The domain transition above would require at least the following allow rules to succeed:

# This domain transition rule...
type_transition init_t apache_exec_t : process apache_t;

# would require at least the following 3 allow rules to succeed
allow init_t apache_exec_t : file execute;
allow init_t apache_t : process transition;
allow apache_t apache_exec_t : file entrypoint;

In practice, we will likely want to allow additional access beside the above minimum. For example, it
is common to allow the default type to signal the source type upon exit (that is, sigchld permission),
inherit file descriptors, and communicate using pipes.

The key concept with domain transitions is that there is a clearly defined entry pointthat is, the file
labeled with the type (apache_exec_t) for which the new (default) type (apache_exec_t) has
enTRypoint permission. The entry point file allows us to strictly control which programs may execute
in which domains (arguably the security trait that makes type enforcement so strong). We know that
the only program that can be used to enter a given domain is that program whose executable file is
labeled with a type to which the domain has entrypoint access. Thus we can know and control which
programs have which privileges.

5.4.2.2. Default Object Transitions

Object transition rules specify a default type for newly created objects. In practice, we commonly use
this form of the type_transition rule primarily for filesystem-related objects (for example, file, dir,
lnk_file). Like domain transitions, these rules cause only a default object labeling to be attempted;
the attempt can succeed only if the policy allows the associated access.

Object transition rules are identified by object class, as follows:

type_transition passwd_t tmp_t : file passwd_tmp_t;

This type_transition rule states that when a process of type passwd_t creates an ordinary file (file



object class) in a directory of type tmp_t the file, by default, should have the type passwd_tmp_t if
allowed by the policy. Notice that the object class refers not to the target type (tmp_t) but to the
default type (passwd_tmp_t). In this example, tmp_t is implicitly associated with the dir object class
because that is the only object class that can contain files. Also, as before, the policy must allow the
access for the default labeling to occur. Access required for the preceding example includes add_name,
write, and search for directories of type tmp_t, and write and create for files of type passwd_tmp_t.

This example is typical and shows one technique for solving the security problems inherent in a
directory shared by many applications such as a temporary directory. Object transition rules are
useful for any objects that will be created at runtime and need to have types other than that of the
containing object.

Some circumstances cannot be handled with object transition rules. Whenever a process needs to
create objects with multiple different types in the same container object, a type_transition rule is
not sufficient. For example, consider a process that creates two UNIX domain sockets in /tmp/ that
will be used by other domains for communication. If we want to give each sock file a different type,
object transition rules would not suffice. We would end up with two rules with the same source,
target, and object class and a different default type, which would result in a compiler error. The
possible solutions to this problem are to create the sock files at installation time and explicitly label
them, place the sock files in separate directories with different directory types, or have the process
explicitly request types on creation.

5.4.3. Type Change Rules

We use a type_change rule to specify default types for relabeling performed by SELinux-aware
applications. Like type_transition rules, type_change rules specify labeling defaults but do not allow
access. Unlike type_transition rules, the effects of type_change rules are not implemented in the
kernel but rely on userspace applications, such as login or sshd, to relabel objects based on the
policy. For example, consider this rule:

type_change sysadm_t tty_device_t : chr_file sysadm_tty_device_t;

This type_change rule states that when relabeling a character file of type tty_device_t on behalf of
sysadm_t, the type sysadm_tty_device_t should be used.

This rule is an example of the most common use for type_change rulesthat is, relabeling a terminal
device on user login. The login program would query the policy via a kernel interface to the SELinux
module, passing in the types sysadm_t and tty_device_t and receiving the type sysadm_tty_device_t
as the type to use for the relabel change. This mechanism allows the login process to label the tty
device on behalf of the user during a new login session while leaving the specifics of the types
encapsulated in the policy instead of hard-coded in the application.

We will probably seldom, if ever, write type_change rules because they are usually used only by core
operating system services.



type_member Rule

The policy compiler also supports a third type rule, type_member. Currently, this rule has
no semantic meaning and if used will have no effect. We mention it here because at the
time of writing, work is ongoing that would create a need for it. A type_member rule is
intended to support specifying the type for members of a polyinstantiated object. The
type_member rule will be enabled with meaningful semantics. The syntax of this rule is the
same as the other two type rules.



5.5. Exploring Type Enforcement Rules with Apol

We have already seen that examining a policy to understand all the type enforcement declarations
and rules is difficult. Determining all the types that are part of an attribute, for example, requires
examining all the type and typeattribute statements in a policy. In a large policy, that could be
thousands of statements spread across dozens of files. This is a daunting task. Automating this kind
of policy analysis was one of the primary motivations for creating the policy analysis and debug tool
apol. Let's examine some of the ways we can use apol to explore a type enforcement policy.

When we first start apol and load a policy, as you can see in Figure 5-2, the Policy Component tab is
visible with the Types tab selected. All the types and attributes are listed on the left and a search
window is on the right. Selecting a type and clicking Show Type Info brings up a window that shows
all the attributes and aliases for that type. Similarly, selecting an attribute and clicking Show Attribute
Info brings up a window that shows all the types that are part of that attribute. Figure 5-3 shows the
detailed information about the domain attribute for this policy. This is one of the simplest but most
valuable functions of apol.

Figure 5-2. Examining types and attributes using apol

[View full size image]



Figure 5-3. Detailed information about the domain attribute

In addition to showing information about types and attributes, apol enables us to search for types or
attributes using regular expressions. Figure 5-4 shows a search for all types that contain the
substring httpd_ with the attributes and aliases for those types displayed.

Figure 5-4. A regular expression search for types

[View full size image]



Apol also enables us to search for policy rules, including searching for rules that indirectly include
types via attributes. The rule searching functionality of apol is powerful, but we want to mention only
some of that power here. Figure 5-5 shows a rule search for allow rules that contain shadow_t as the
target type. Notice that the "Include indirect matches" button is selected, which means that rules
that reference shadow_t indirectly through an attribute are included. Manually searching for rules and
resolving attributes is an almost impossible task.

Figure 5-5. A rule search for allow rules with shadow_t as the target type

[View full size image]



Apol is a valuable tool to use as you read through this book and try to understand an SELinux policy.
It enables you to explore the content of a policy, perform sophisticated searches, and browse policy
components such as types and object classes. In particular, you will find the TE Rules under the
Policy Rules tab to be extremely valuable to answer the ubiquitous question, "What's going on with
this type?" As you get familiar with the tool and with SELinux policy, you should explore the tools
under the Analysis tab. These tools perform complex analyses of the policy.



5.6. Summary

Types are the primary basis for access control in SELinux. They serve as access control
attributes for all objects (process, file, dir, socket, and so on). Types are declared using the type
statement.

Attributes are groups of types. We can use them in place of types in most policy statements. We
must declare attributes before using them. We can add types to attributes as part of a type
declaration or using the typeattribute statement.

Aliases are alternate names for types, most often used to provide backward compatibility when
renaming types. We declare aliases as part of a type declaration or using the typealias
statement.

There are four AV rules that share common syntax: allow, neverallow, auditallow, and
dontaudit.

We use an allow rule to specify what access a domain type may have to an object type. We
specify access in terms of object classes and permissions.

Audit messages are, by default, not generated when access is allowed, but are generated when
access is denied. We use dontaudit rules to specify denied accesses that should not generate an
audit message. We use auditallow rules to specify allowed accesses that should generate an
audit message.

AV rules (for example, allow) are cumulative, and the access that will be allowed or audited at
runtime for a given source type, target type, and object class key is the union of all the rules
that refer to that key.

We use neverallow rules to state invariant properties about access that should never be allowed
by an allow rule. If an allow rule violates an invariant, the checkpolicy compiler will generate a
compile error.

Two type rules share a common syntax: type_transition and type_change. Type rules do not
allow access; instead, they specify desired default labeling policy for object creation and relabel
events.

We use type_transition rules to label new objects upon creation (object transition) or to
change process types on execution of new applications (domain transition).

We use type_change rules to specify default types for relabeling objects. They are used by
SELinux aware software such as login or sshd.

The policy analysis tool apol is valuable for understanding and analyzing complex SELinux
policies.



Exercises

1. Declare a type named samba_t with the attribute domain and the alias smbd_t.

2. Create an allow rule that gives a process with the type samba_t read, write, and
getattr access to files of type user_home_t.

3. Convert these allow rules into as few rules as possible:

allow samba_t self : process *;
allow samba_t user_homedir_t : dir { read getattr search };
allow samba_t user_homedir_t : dir { write add_name };
allow samba_t user_homedir_t : file { read getattr };
allow samba_t user_home_t : file { write };

4. Write an access vector rule that will cause an audit message to be generated whenever a
user's SSH key file, represented by the type user_ssh_key_t, is written.

5. Write a type_transition rule that will cause files of type sysadm_tmp_t to be created by
default when processes of type sysadm_t create files in directories of type tmp_t.

6. Write a type_transition rule that will cause a domain transition to games_t to occur
when processes of type user_t execute files of type games_exec_t.

7. Write the minimum allow rules required that will allow the type_transition rule from
Exercise 6 to succeed.
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SELinux provides a form of role-based access control (RBAC) that builds upon type enforcement (TE).
Roles are used to group domain types and to restrict relationships between domain types and users.
Users in SELinux associate one or more roles with a Linux user. Using roles and users, the RBAC
features allow for the efficient definition and management of the privileges ultimately granted to
Linux users.



6.1. Role-Based Access Control in SELinux

Roles and users exist in SELinux as the basis for its RBAC feature. It may be surprising that we have
not discussed roles or users in any significant way until this point. The security features of most other
mainstream operating systems are mostly centered on granting access to users, either directly or
through some form of group or role mechanism. This is not the case in SELinux, where access is not
granted directly to users or roles. Instead, as discussed in Chapter 5, "Type Enforcement," access is
granted to types via TE allow rules. Roles act as a supporting feature to type enforcement, and
together with users provide a means to bind type-based access control with Linux users and the
programs they are allowed to run. RBAC in SELinux further constrains type enforcement by defining
the relationship between domain types and users to control Linux users' privileges and access
permissions. RBAC does not allow access. As always in SELinux, allowed access is the providence of
type enforcement.

Warning

The fact that Linux and SELinux have distinct user identifiers (that are sometimes related)
can be confusing. To help avoid this confusion, we write "Linux user" when meaning the
user account as defined in /etc/passwd. Anytime we discuss "user" or "user identifier"
without a qualifier, we mean the user identifier in security contexts as defined in the
SELinux policy.

6.1.1. Overview of RBAC in SELinux

As stated, in SELinux, RBAC features build upon and support the TE features. We grant privileges to a
user indirectly by associating domain types with one or more roles. The RBAC policy statements do
not grant access. Instead, RBAC further constrains the TE policy by controlling the associations of
domain types, roles, and users in a security context. In this way, the domain transitions available to
a user's domain type are restricted based on the user's role, ultimately restricting the total privileges
of the user.

To illustrate, consider the example from Chapter 2, "Concepts," which we elaborate further in Figure
6-1. This example illustrates a domain transition from a bash shell process with the domain type
user_t to a process running the password program with the domain type passwd_t. Notice that we
added the user and role portions of the security contexts for the process security contexts
(joe:user_r:user_t and joe:user_r:passwd_t). Let's also assume that the policy includes the
necessary TE rules to permit the domain transition (which are not shown).

Figure 6-1. Relationship of users, roles, and types, and the SELinux RBAC



statements

[View full size image]

This example demonstrates two kinds of RBAC policy statements: a user declaration statement
(user) and two role declaration statements (role). These statements create associations between the
user, role, and type identifiers in the policy. You will see the full syntax of these statements later in
the chapter. For now, understand their effect on domain transitions.

The user statement shown in Figure 6-1 associates the SELinux user joe with the role user_r. This
statement tells SELinux that the user joe and the role user_r are allowed to coexists in a security
context. Without this statement, the user joe and role user_r process security contexts in Figure 6-1
would be invalid and SELinux would refuse to create them, resulting in a denial of the domain
transition attempt.

The two role statements associate the role user_r with the domain types user_t and passwd_t. Like
the user statement, the role statements are required for the process security contexts to be valid. In
particular, without the role statement associating the type passwd_t, this domain transition would fail
even though the TE policy allows it. If we did not want the user_r role to run the password program,
we could simply remove this role statement and the security context would never be created by the
kernel, even if the TE rules allowed the access.

6.1.2. Managing User Privileges with Roles

As the example in Figure 6-1 illustrates, we do not directly associate domain types with users.
Instead, we associate roles with domain types, which are in turn associated with SELinux users. This
additional layer of indirection serves two purposes. First, it makes the management of the overall



policy less complex. A system may only have three or four roles, but could have many hundreds of
users and domain types. Directly associating domain types with users would be difficult to manage.
Assigning the domain types to a handful of roles that characterize the privileges of the set of types
(for example, ordinary user domain types) and then assigning those roles to users is more
manageable.

Roles in SELinux also allow us to limit the access of users based on their current privileges and
responsibilities as represented by the active role. For any given process, one role is "active" at a time
(that is, the role in the process security context) and, because the domain types are associated with
roles, the available domain transitions are limited to those domain types associated with the active
role.

Limiting domain transitions to only the currently active role allows a user to be associated with more
than one role without gaining the union of the access rights for all the roles. For example, we could
associate a user with both a system administration role and a more restrictive ordinary user role, the
latter being used for normal interactive, nonadministrative activities. In this scenario, the more
restrictive ordinary user role would be active during normal use, preventing access to powerful
administrative domain types. The system administrator would "activate" (that is, change via a
domain transition) the more privileged administrative role only when necessary to perform system
administrative duties. This is similar to, but more fine-grained than, the common best practice for
standard Linux of only switching to the root account for system administration and using a normal
user account for all other activities.

The key point to remember about roles is that they are only a collection of domain types, which can
be conveniently associated with a user. They are not a separate access control mechanism in
SELinux.

Tip

A number of utilities such as newrole and a modified su command provide a means by
which a user (or user process) changes the current (that is, active) role by creating a new
shell process with a different security context via a domain transition (see Chapter 13,
"Managing an SELinux System"). (Fedora Core 5 [FC5] removes the ability for su to change
roles, instead requiring the use of newrole.) Changing roles is controlled by the associations
of users and roles (that is, the user statement) and role allow rules (allow), which we
discuss later in the chapter.



Roles Versus User Domain Types

To date, most SELinux policies use roles only in limited ways. This is partly in recognition
of the secondary purpose of roles with respect to type enforcement. The typical situation
today is that one of the associated domain types for each role is a "user domain type,"
which is the type that shell processes for users of that role are assigned at initial login.
For example, the ordinary, unprivileged user domain type user_t is associated with the
role user_r. Likewise, the privileged user's untrusted domain type is staff_t, which is
associated with the role staff_r.

These initial user domain types, and all the domain types to which they may transition,
are truly what define the roles "user" and "staff." For example, the primary difference
between these two "roles" is the ability of the staff role (and hence the staff_t domain
type) to transition into the privileged administrator roles and user domain type
(sysadm_t, which has an associated sysadm_r role).

One ramification of the practice of having one initial user domain type per role is that we
tend to have derived domain types for some programs. For example, to keep
downloaded data, including programs, separated by role (reducing the chance of co-
opting administrative users), we could run a Web browser in different domain types for
each role. To accomplish this goal, we would create different domain transition rules for
the associated user domain types (user_t and staff_t). Upon executing the Web
browser executable file, each user domain type would transition into separate domain
types (that is, user_mozilla_t and staff_mozilla_t), rather than the same type (that is,
mozilla_t) as we had with passwd_t. In this way, ordinary users (user_t) and
administrative users (staff_t) would have domains for Web browsing protected from
each other. We would associate each role only with the appropriate types. (For example,
user_mozilla_t would be associated only with user_r.) To complete the separation, we
would create separate file types for each Web browser domain and only allow the
domains types "write" access to their respective file types. The result would be that the
Web browser runs in a different domain depending on the role of the user and the
downloaded data is separated based on the role.

6.1.3. Users and Roles in Object Security Contexts

In our password policy example (see Figure 6-1), we did not include the full security context for the
file objects shown (that is, the executable file /usr/bin/passwd and the shadow password file
/etc/shadow). This absence reflects the relatively low importance of the user and role portion of the
security context for objects. Although objects must still have a full security context, the user field at
most supports auditing, and roles have no purpose at all. If we examine the objects in Figure 6-1 on
our example system, we see the following complete security contexts:

# ls --scontext /usr/bin/passwd /etc/shadow
system_u:object_r:shadow_t       /etc/shadow
system_u:object_r:passwd_exec_t  /usr/bin/passwd



As you can see, both objects have the special role object_r, which is typically the role for all objects.
This role is hard-coded into SELinux, does not need to be declared, and is implicitly allowed for all
types. You should never try to declare the role object_r.

The user portion of the security context for objects is usually set to the user portion of the creating
process security context. This feature has some potential utility to track which user created the
object but in general has no security enforcement purpose (other than possibly constraints, which we
discuss in Chapter 9, "Conditional Policies"). In the preceding case, the user for both objects is
system_u, which is a special user found in many policies representing system resources and
processes.



6.2. Roles and Role Statements

SELinux does not have any built-in roles with the exception of object_r. Roles, like types, are
declared in the policy and given meaning through consistent use. Four policy statements relate to
roles: role declaration statements, role allow rules, role transition rules, and role dominance
statements.

6.2.1. Role Declaration Statement

The role declaration statement (role) declares a role identifier, if it has not already been declared,
and associates types with the role. The example in Figure 6-1 contains the following role statements:

role user_r types user_t;
role user_r types passwd_t;

These statements associate the domain types user_t and passwd_t with the role user_r. As you can
see, role statements can be repeated for the same role identifier. The first role statement for a
given role identifier will declare the role in addition to associating the listed types. All the subsequent
role statements associate additional types. Multiple role statements for a single role are commonly
used to place the role statements close to the declaration of the types with which they are associated
(that is, in the same policy source module). The full syntax for the role declaration statement is
provided in the sidebar on page 136.

Role Declaration Statement Syntax

Role declaration statements declare role identifiers and associate types with the role. A
type must be associated with a role to coexist in a security context with the role. The
special role object_r is predefined and is implicitly associated with all types and used in
the security context of all objects. There can be multiple role statements for the same
role identifier. The first statement declares the role and associates one or more types;
the subsequent statements only associate types. The full syntax for the role statement is
as follows:

role role_name [types type_set];



role_name An identifier for the role. If this is the
first role statement for this identifier,
the role is declared. The identifier can
be any length and can contain ASCII
characters, numbers, periods, and
underscores (_). A period has a special
meaning when used in a role identifier.
A period is used to indicate restrictions
on the set of types that may be
assigned to a role. For example, the
set of types for a role called
apache.cgi must be a subset of the
type set of a role called apache.

type_set One or more type or attribute
identifiers. Multiple identifiers are
specified using a space-separated list
enclosed in braces ({ })for example,
{user_t passwd_t }. Types can be
excluded from the list by prepending -
to the type name (for example, {
exec_type -sbin_t }). If type_set is

omitted (along with the types
keyword), the role is declared without
any type associations.

Role declarations are valid in monolithic policies, base loadable modules, and non-base
loadable modules. They are not valid in conditional statements.

6.2.2. Role Allow Rules

SELinux provides a means to change roles during program execution via the execve() system call.
This feature is similar in nature to domain transitions, which result in the domain type changing. Role
allow rules (allow) control role changes that can occur on program execution by specifying which
roles are allowed to change to other roles. Successful role changes require that a user be authorized
for the new role, a corresponding role allow rule permitting the transition from the old role to the
new role, and the new role must be authorized for the new domain type. For example, consider the
following role allow rule:

allow staff_r sysadm_r;

This example role allow rule allows a process with the role staff_r to change to the role sysadm_r
during a domain transition. This change allows only transition from staff_r to sysadm_r; another role
allow rule would be required to transition back from sysadm_r to staff_r. The full syntax for role
allow rules is found in the sidebar on page 137.



Warning

Notice that the role allow rule and the vastly more common TE allow rule discussed in
Chapter 5 both have the same keyword (that is, allow). Be careful not to confuse the two
rules, whose syntax and semantics differ entirely. In general, when we refer to an "allow
rule," we mean the access vector (AV) allow rule discussed in Chapter 5. We endeavor to
always write "role allow rule" when we mean the role variety of this keyword.

Role Allow Rule Syntax

Role allow rules authorize role changes on program execution. The full syntax for the
role allow rule is as follows:

allow role_set role_set;

role_set One or more role identifiers. Multiple
identifiers are specified using a space-
separated list enclosed in braces ({
})for example,

{ staff_r sysadm_r }

Role allow rules are valid in monolithic policies, base loadable modules, and non-base
loadable modules. They are not valid in conditional statements.

6.2.3. Role Transition Rules

Because roles can change on program execution in a manner similar to types, we need a means to
automate this transition within the policy language. For types, we used the type_transition rule to
specify automatic, default type transitions. For roles, we have the role transition rule
(role_transition). This rule is similar in purpose and syntax to the type_transition rule except that
it specifies a default role change to occur when executing a file. For example, consider this rule:

role_transition sysadm_r http_exec_t system_r;

This rule states that, unless otherwise requested, when a process with the role sysadm_r executes a
file with the type http_exec_t, SELinux should attempt to change the role to system_r. The full syntax
for role transition rules is found on page 139.



As with type_transition rules, role_transition rules do not allow the access necessary to permit
the role change. In this case, role allow rules must also be present for the role change to succeed.
Role transition rules are commonly used to change the role of system daemons when directly
executed by a system administrator rather than the initialization process (init). If role transition
rules were not used in this situation, daemons would have a different role depending on how they
were started. Other than this type of situation, we do not expect roles to change implicitly; instead,
we expect users to explicitly change their role when necessary using programs designed for that
purpose (for example, the newrole command).

6.2.4. Role Dominance Statement

A role dominance statement (dominance) declares a role in terms of other roles. We can use this
statement to create a hierarchical relationship among roles. In this case, the "dominant role" would
automatically inherit all the type associations of the roles it dominates. For example, consider the
following statement:

dominance { role super_r {role sysadm_r; role secadm_r; }

This role dominance statement declares the role super_r, if it has not already been declared, and
makes it dominate the roles sysadm_r and secadm_r. The role super_r will have all of the type
associations of the roles sysadm_r and secadm_r. If the associations change for either of these
"dominated roles," the association will change for super_r, too. Note that any types added to the
dominated role after a dominance statement are not inherited by dominant role through the
dominance statement. So, in the preceding example, if a type were added to the secadm_r role after
the dominance statement, the super_r role would not inherit the new type. The role dominance
statement has not yet been widely used in existing policies. The full syntax for the role dominance
statement is in the sidebar on page 140.

Role Transition Rule Syntax

Role transition rules specify a default role change to occur when executing a file of a
given type. Role transition rules do not allow access. Role allow rules must also be
present for the role change to succeed. The full syntax for role transition rules is as
follows:

role_transition role_set type_set role;



role_set One or more role identifiers. Multiple
identifiers are specified using a space-
separated list enclosed in braces
({})for example, { staff_r sysadm_r
}.

type_set One or more type or attribute
identifiers. Multiple identifiers are
specified using a space-separated list
enclosed in braces ({ })for example, {
user_t passwd_t }. Types can be
excluded from the list by prepending -
to the type name (for example,
{exec_type -sbin_t }).

role The new role for the security context
after the role transition.

Role transition rules are valid in monolithic policies, base loadable modules, and non-base
loadable modules. They are not valid in conditional statements.

Role Dominance Statement Syntax

The role dominance statement specifies a hierarchical relationship among roles. Roles
inherit all the type associations of the roles they dominate. The basic syntax of the role
dominance statement is as follows:

dominance { role role_name { role_set}  }

role_name An identifier for the role. The identifier can be any length and
can contain ASCII characters, numbers, period, and
underscore (_).

role_set One or more roles specified in the form role role_name;.
Multiple roles are specified using a space-separated list (for
example, { role staff_r; role sysadm_r; }).

The policy language does support a much more complicated syntax where the role_set
can contain embedded dominance relationship definitions that are indicated with braces.
For example:

dominance { role a_r { role b_r; role c_r { role d_r; } } }



In this example, the roles would be defined as follows:

d_r Only its own types

c_r Its types and those of d_r

b_r Only its own types

a_r Its own types and all types in b_r,
c_r, and d_r

Role dominance statements are valid in monolithic policies, base loadable modules, and
non-base loadable modules. They are not valid in conditional statements.



6.3. Users and User Statements

Linux and SELinux user identifiers are distinct and are often unrelated. In SELinux, it is possible for
the Linux user identifier and the SELinux user identifier of a given process to differ (for example, see
the discussion of user_u that follows). The design decision for SELinux to have a distinct user
identifier (rather than share that of Linux) is motivated by the desire to create an immutable SELinux
user identifier. In standard Linux, the user identifier changes to reflect changes in privilege (for
example, changing to root). In many cases, both the real and effective user identifiers change. This
makes it difficult to track which user logged in for auditing, authentication, and other uses.
Separating the Linux and SELinux user identifiers allows the Linux user identifier to change as needed
without affecting SELinux.

Note

Many SELinux systems, including Red Hat Enterprise Linux version 4 (RHEL4) and Fedora
Core 4 (FC4), can actually change the SELinux user identifier during a login session. In
particular, the su program was modified to set the Linux and SELinux user identifier. This
departure from the original design goal of an immutable SELinux user identifier was
motivated by usability; it was thought that not changing the SELinux user identifier would
confuse users and create a much more complicated process for adding user accounts. In
addition, the Linux audit framework stores an immutable login user identifier for auditing
purposes, somewhat reducing the need for the SELinux user identifier to remain constant.
Fedora Core 5 (FC5) reverts to the original behavior of not allowing SELinux user identifiers
to change.

6.3.1. Declaring Users and Associating Roles

The user declaration statement (user) declares a user identifier in the policy and associates it with
one or more roles. The user statement is the only policy statement relating to SELinux users. The
example in Figure 6-1 includes the follow user declaration:

user joe roles { user_r };

This statement declares the user joe, if it has not already been declared in the policy, and associates
the role user_r with the user. Unlike role statements that may be mixed among the TE statements,
user statements must come after all the type and role statements and before constraints (see Figure
3-5 in Chapter 3, "Architecture").

Similar to the association between roles and types, the user association allows a role to be present in
a security context with a specified user. The full syntax for the user statement is in the sidebar on



page 142.

Note that there is no user transition or user allow rule. This reflects the initial design goal of
immutable users. Changes to the user identifier are controlled only by constraints, which we discuss
in Chapter 9.

User Declaration Statement Syntax

The user declaration statement declares a user identifier, if it has not already been
declared, and associates it with one or more roles. The full syntax for the statement is as
follows:

user user_name roles role_set;

user_name The identifier for the user. If this is the first user statement
for this identifier, the user identifier is declared. The
identifier can be any length and can contain ASCII
characters, numbers, period, and underscore (_).

role_set One or more role identifiers that must be previously defined
in the policy. Multiple identifiers are specified using a space-
separated list enclosed in braces ({})for example, { staff_r
sysadm_r }.

User declarations are valid in monolithic policies, base loadable modules, and non-base
loadable modules. They are not valid in conditional statements.

6.3.2. Mapping Linux Users to SELinux Users

The login programs (for example, login, sshd) are responsible for mapping Linux users to SELinux
users. On login, if there is an SELinux user identifier that is exactly the same as the Linux user
identifier, the matching SELinux user identifier becomes the user identifier in the security context for
the initial shell process. In this way, if a Linux user identifier also exists as a user identifier in the
SELinux policy, all login processes will set the initial shell process security context user identifier to
that matching Linux identity.

In many cases, especially general-purpose configurations such the default policies in RHEL4 and FC4,
it is not desirable to have to define each ordinary user in the policy. Ordinary users typically have the
same privileges with respect to SELinux (that is, the user_r role and the user_t initial user domain
type). To address this issue, SELinux has a special user identity, user_u, called the generic user. If
the generic user user_u is defined in the policy, all Linux users will be mapped to it if they do not
have a matching SELinux user in the policy.

For example, suppose we have the following user statement in our policy:



user user_u roles { user_r };

This statement defines the generic user user_u and authorizes it for the role user_r just as we did for
joe earlier. The difference is that if user_u is defined in the policy, all Linux users that are not
explicitly defined in the policy are mapped to user_u. So, for example, if jane is a Linux user identifier
but there is no user jane defined in the SELinux policy, when the Linux user jane logs in, the user
identifier in the initial shell process security context will be user_u. Because joe is defined in the
policy, the initial SELinux user identifier for that user will be joe, even though user_u is also defined
in the policy.

If the generic user user_u is not defined in the policy, any Linux user identifier not explicitly defined in
the SELinux policy will be unable to log in, even in permissive mode. The reason for this is that on
login the initial shell process must have a valid security context, including a user identifier. If neither
user_u nor the Linux user identifier is defined in the policy, the login process cannot create a valid
security context (because there is no user identifier for it to use). Therefore, if you do not include
user_u in your policy (which for many configurations makes sense), you must explicitly add all Linux
users to the SELinux policy.

Note

In FC5, the user-mapping mechanism is greatly enhanced to allow the explicit mapping of
Linux users to SELinux users through a configuration file. This allows the creation of more
than one generic user (for example, staff_u in addition to user_u). The existing mapping
rules are retained as a fallback for backward compatibility. Chapter 13 includes additional
information about new tools that can manage user mappings.

SELinux has a second special user, the system user system_u, which is typically used for all system
processes such as init, and daemons started by init. Technically, the user system_u has no special
meaning and is not treated exceptionally in any way within the policy language. However, most
existing policies include this user, and systems are generally configured expecting that this SELinux
user exists for system resources. It is generally a good idea to always include system_u in your policy.

Warning

Never create a Linux user account with the identifier system_u. If you do, that Linux user
will be able to log in with the system user identifier, which is usually highly privileged
(though still much less privileged than root on an ordinary Linux system).



6.4. Exploring Roles and Users with Apol

Apol has features for searching and displaying roles and users. The Roles tab on the Policy
Components tab, shown in Figure 6-2, displays all the roles and provides searching functions. In this
example, we search for roles associated with the type user_ssh_t. The search results show that the
role user_r is associated with this type. Because we have chosen to show all information about the
roles in the search results, all the types associated with the matching roles are shown. As previously
discussed, it is common for role declaration statements, which associate roles and types, to be
distributed throughout the policy source. This feature of apol makes it easy to find the relationships
between roles and type.

Figure 6-2. Apol displaying the types associated with the role user_r

[View full size image]

The Users tab of the Policy Components tab offers similar features for users. Figure 6-3 shows all the
SELinux users in this policy and the associated roles. Searching for SELinux users by associated roles
is also possible.



Figure 6-3. Apol displaying all the SELinux users and the associated roles

[View full size image]

In addition to displaying roles and users, apol enables us to search for role allow and transition rules.
This feature, which is located on the RBAC Rules tab of the Policy Rules tab, is similar to TE rule
searching feature. Figure 6-4 shows a search for all the role allow and transition rules that have the
role sysadm_r in the source field.

Figure 6-4. Apol displaying all the role allow and transition rules with the
role sysadm_r as the source

[View full size image]





6.5. Summary

Within SELinux, roles and users provide for an RBAC feature. Unlike traditional RBAC
mechanisms, in SELinux roles and users build upon the power of type enforcement rather than
being an additional type of access control.

Roles are a means of associating sets of domain types into a collection that represents
"privileges" that we then assign to a user. Roles control domain transitions because SELinux will
create a security context only if the new type is authorized for the role in the security context.

The role declaration statement (role) defines a role identifier and associates it with one or more
types. Multiple role statements for the same role can exist within a given policy; the definition
of the role is cumulative. Roles can also be declared via the much less used role dominance
statement (dominance).

Role allow rules (allow) control whether the role in a security context may change on an
execve() system call. The role transition statement (role_transition) causes a role change to
occur by default depending on the role of the calling process and the type of the file executed.

SELinux users and Linux users are distinct identifiers. Any association between the two is the
result of login process conventions. The general behavior is if the Linux and SELinux user
identifier match, the initial user process security context will have the matching user identifier.
Otherwise, if the special user user_u is defined in the policy, all nonmatching Linux users will
have user_u as the user in their initial process security context. If there is no matching user and
user_u is not defined, the user account cannot log in, even in permissive mode.

In SELinux, users provide the means to associate a Linux user with an SELinux role (and by
extension with the set of domain types authorized for that role). The user declaration statement
(user) specifies this association. SELinux will not create a security context unless the role is
associated with the user via a user statement.



Exercises

1. Declare an SELinux user with the name tom associated with the roles staff_r and
sysadm_r.

2. Associate the role sysadm_r with the type sysadm_mozilla_t.

3. Write a role transition statement that causes a change to the role system_r when a
process with the role sysadm_r executes a file with the type initrc_exec_t.
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SELinux provides a constraint mechanism to further restrict the access allowed by the policy
regardless of the policy allow rules. In this chapter, we explore the constraint feature in SELinux.



7.1. A Closer Look at the Access Decision Algorithm

To understand the purpose of constraints, let's revisit the SELinux Linux Security Module (LSM).
Recall the SELinux kernel architecture discussed in Chapter 3, "Architecture," the salient portion of
which is depicted again in Figure 7-1.

Figure 7-1. Review of the SELinux LSM module

[View full size image]

We want to take a closer look at how the access decision logic works within the security server. The
access vector cache (AVC)[1] is keyed by a triple of source security identifier (SID), target SID, and
object class. SIDs are internal references to security contexts (see the sidebar on page 151).

[1] See linux-2.6/security/selinux/avc.c.



Security Contexts and SIDs

SELinux implements the Flask security architecture, which provides a framework for
implementing enhanced access control but remains security policy neutral. This means
that the AVC and its interfaces with the LSM hooks are not specifically tied to type
enforcement (TE) and the other security policies SELinux implements. As far as the AVC
is concerned, a security identifier is an opaque unique reference to a set of security
credentials. The AVC caches access decision results indexed by source and target SIDs as
well as object class identifier.

The SELinux security server applies semantic meaning to SIDs by internally associating
security contexts with SIDs. Thus, SELinux can use SIDs to find type, user, and role
identifiers while the AVC and the LSM hook interfaces can remain ignorant of these
details.

In the source code, you can see the policy-neutral portions of the SELinux LSM module, including the
AVC, in linux-2.6/security/selinux/*.c and the policy-specific portions (that is, the security server)
in linux-2.6/security/selinux/ss/*.

When the SELinux LSM hooks [2] ask for an access decision, they provide the SIDs of the subject
(source) and object (target) and the object class. The AVC uses the SID-SID-class triple to look up
allowed access, which is stored as a bit mask.

[2] See linux-2.6/security/selinux/hooks.c.

When a cache miss occurs, the AVC calls the security server function security_compute_av()[3] to
determine allowed access. This function has two basic steps in its access decision logic: 1) create a
mask representing the object permissions allowed according to the TE allow rules for the type-type-
class triple, and 2) remove from the allowed mask those permissions disallowed by any constraint.
This second step allows a constraint to be a means to restrict permissions that otherwise would be
allowed by the policy.

[3] See linux-2.6/security/selinux/ss/services.c.

The primary purpose of constraints is to enforce global restrictions for certain permissions regardless
of the allow rules in the policy. All constraints are checked each time the security_compute_av()
function is called before returning the allowed access mask to the AVC. So, as you can see,
constraints further limit the access allowed in an SELinux policy.

SELinux has two types of constraints. The constrain statement is the most common constraint and
enables you to further restrict access based on the user, role, and/or type of the source and target
security contexts. The validatetrans statement is a more recent addition to SELinux and enables you
to further restrict access for security context change events based on the old, new, and process
security context.

Note



At the time of this writing, the apol tool does not support constraints. Therefore, you
cannot view these statements with that tool. Support for constraints is planned and should
be available in the future.



7.2. Constrain Statement

The constrain statement has three elements: a set of object classes to which the constraint applies,
a set of permissions for those classes that are being constrained, and a Boolean expression of the
constraint. Constraints are organized and stored within the policy by object class. You can see the full
syntax for the constrain statement in the sidebar on page 152.

Constrain Statement Syntax

The constrain statement enables you to restrict specified permissions for specified object
classes by defining constraints based on relationships between source and target security
contexts. The full syntax for the constrain statement is as follows:

 constrain class_set perm_set expression ;

class_set One or more object classes. Multiple object classes must be
separated by spaces and enclosed in braces ({ })for
example, {file lnk_file}. The special operators *, ~, and -
are not allowed in class sets for this statement.

perm_set One or more permissions. All permissions must be valid for
all object classes in the class_set. Multiple permissions must
be separated by spaces and enclosed in braces ({ })for
example, {read create}. The special operators *, ~, and -
are not allowed in permission sets for this statement.

expression A Boolean expression of the constraint.

The Boolean expression syntax supports the following keywords:

t1, r1, u1 Source type, role, and user,
respectively

t2, r2, u2 Target type, role, and user,
respectively

Constraint expression syntax also support the following operators:



== Set member of or equivalent

!= Set not member of or not
equivalent

eq (Roles keyword only)
equivalent

dom (Roles keyword only)
dominates

domby (Role keyword only)
dominated by

incomp (Role keyword only)
incomparable

The complete semantic meaning and allowed parameters for each operator is described
in Table 7-1.

Constrain statements are valid only in monolithic policies and base loadable modules.
They are not valid in conditional statements or non-base loadable modules.

The constrain statement lets you express constraints on any combination of the three elements of a
security context (user, role, and type). Constraint expressions compare the contexts of the source
(subject) process and the target (object) with each other and/or with explicit names (such as type or
role identifiers).

Constraint expressions can be complex, but in practice are usually small and specifically targeted.
Here is an example constraint:

constrain process transition (u1 == u2) ;

Let's take a closer look at this constraint. First, note that it applies to the process object class only,
and only constrains the transition permission for processes. Recall that the transition permission is
required to allow a domain transition; in effect, this constraint further restricts domain transitions.

Now let's look at the constraint expression (u1 == u2). The keywords u1 and u2 indicate, respectively,
the source and target user identifiers for the security contexts. So, this expression resolves to true
when the source and target user identifiers are the same. In the case of domain transitions, the
source is the "current" security context, and the target is the "new" security context for the process.

Looking at the preceding constraint in its entirety, we see that it requires that the source and target
user identifiers remain the same for all domain transitions. How? Recall the description of the access
algorithm earlier. When a process requests transition permission, and the AVC calls the security
server to determine allowed access for the triple source-target-class, the preceding constraint would
become effective (for the process object class) and would check the user identifier in the source and
target security contexts. If the user identifiers are not the same, the bit in the mask indicating
transition permission is removed before the granted access mask is returned to the AVC.



Let's look at another example:

constrain process transition (r1 == r2) ;

This constraint is similar to the previous statement except that it constrains role identifiers rather
than user identifiers. The keywords r1 and r2 indicate source and target role identifiers, respectively.
This constraint requires that role identifiers not change on a domain transition in much the same way
that the previous constraint requires user identifiers not to change.

Because these two constraints relate to the same object class and permission, the constrain
expression syntax allows us to combine them into a single Boolean expression:

constrain process transition (u1 == u2 and r1 == r2) ;

This single statement is equivalent to the two previous statements. Either form will have the same
effect of restricting user and role identifier changes relating to domain transitions.

Let's take our example a little further. In some situations, we want to allow the user and/or role
identifier to change on a domain transition. For example, the login process needs to change the user
and role identifiers to those of the user logging in. Another example is a program that allows you to
change your role, which must be able to change the role identifier during a domain transition. In
general, such programs are trusted processes, and we need a way to allow them to change user/role
identifiers while ensuring that the constraint is active for all other programs.

To achieve this goal, let's first define a way to recognize those domain types that are trusted to
change user and role identifiers. We do this via a type attribute. In particular, let's assume that there
are two attributes defined in the policy: privuser and privrole. The former is associated with all
types allowed to change user identifiers, and the latter with those allowed to change role identifiers.
With these attributes, we can change our constraint as follows:

constrain process transition (u1 == u2 or t1 == privuser) ;
constrain process transition (r1 == r2 or t1 == privrole) ;

In both statements, t1 refers to the source type (just as t2, if used, refers to the target type). The
first statement allows the user identifier to be changed in a domain transition only if the source type
has the privuser attribute. Likewise, the role can be changed if the source type has the privrole
attribute.

Let's make sure you understand how attributes affect these constraints. Recall that the kernel
expands attributes into the list of types that contain the attribute. So, to the kernel, the constraint
really is a list of types rather than a single attribute. In the case of a list of types (or an attribute) on
the right side of the operator, the == operator really means "is a member of" the set of types listed.
Likewise the != means "is not a member of" the set of types. So, in our preceding example, the
partial statement t1 == privuser really means "if the source type is in the list of types that have the
privuser attribute."

Note



For constraint expressions, the left side of all operators must be one of the allowed
keywords (for example, u1 or u2) and may never be a type, attribute, role, or user
identifier (or list of identifiers). The right side of an operator may be a key word or one or
more identifier names.

If the left and right sides of the operator are the role keywords r1 and r2, you have a few more role
operators to choose from; specifically eq, dom, domby, and incomp, although these are rarely used.
Table 7-1 summarizes the operators allowed for expressions in constrain statements.

Table 7-1. Allowed Arguments and Semantic Meaning for Constrain
Expressions

Operator Left Side Right Side Semantic Meaning

== t1 t2 Source type equals target type.Source type equals target type.

t1 (t2) type and/or attribute
name(s)

Source (target) type is a member ofSource (target) type is a member of
the set of types indicated by names.

r1 r2 Source role equals target role.Source role equals target role.

r1 (r2) role name(s) Source (target) role is a member ofSource (target) role is a member of
the set of roles indicated by names.

u1 u2 Source user equals target user.Source user equals target user.

u1 (u2) user name(s) Source (target) user is a member ofSource (target) user is a member of
the set of users indicated by names.

!= t1 t2 Source type does not equal targetSource type does not equal target
type.

t1 (t2) type and/or attribute
name(s)

Source (target) type is not a memberSource (target) type is not a member
of the set of types indicated by names.of the set of types indicated by names.

r1 r2 Source role does not equal target role.Source role does not equal target role.

r1 (r2) role name(s) Source (target) role is not a member
of the set of roles indicated by names.

u1 u2 Source user does not equal targetSource user does not equal target
user.

u1 (u2) user name(s) Source (target) user is not a memberSource (target) user is not a member
of the set of users indicated by names.of the set of users indicated by names.

eq r1 r2 Source role equals target role (exactlySource role equals target role (exactly
same semantics as r1 == r2).



Operator Left Side Right Side Semantic Meaning

dom r1 r2 Source role was defined to dominateSource role was defined to dominate
target role using role dominates
statement.

domby r1 r2 Target role was defined to dominateTarget role was defined to dominate
source role using role dominates
statement.

incomp r1 r2 Neither source nor target role
dominates the other.

dom r1 r2 Source role was defined to dominate
target role using role dominates
statement.

domby r1 r2 Target role was defined to dominate
source role using role dominates
statement.

incomp r1 r2 Neither source nor target role
dominates the other.



7.3. Label Transition Constraints

SELinux supports a second constraint statement, validatetrans. This statement was added as part of
the modified multilevel security features we discuss in the next chapter. With the validatetrans
statement, we can further control the ability to change the security context of supported objects. As
of this writing, the only supported objects for this constraint are the filesystem objects (file, directory,
device files, and so on).

Unlike the constrain statement, the validatetrans statement allows you to relate the new and old
security context of an object with each other and/or with a third security context, that of the process
attempting to relabel the object. Thus, new keywords are added for this statement, specifically t3, r3,
and u3, respectively representing the type, role, and user of the process security context. The *1
keywords represent the old security context, and the *2 keywords represent the new security
context. The full syntax for this statement is available in the sidebar on page 157.

Warning

Be careful not to confuse the keyword associations between the constrain and
validatetrans statements. For the constrain statement, t1 represents the source (or
calling process) type, and t2 represents the target (object) type. However, in the
validatetrans statement, t3 is now the source process type, t1 is the "old" type, and t2 is
the "new" type.

Validatetrans Statement Syntax

The validatetrans statement restricts the ability to change the security context of
specified supported objects by defining constraints-based relationships with old and new
security contexts and the security context of the process. The full syntax for the
validatetrans statement is as follows:

validatetrans class_set expression ;

class_set One or more supported object classes. Multiple object
classes must be enclosed in braces ({ })for example, {file
lnk_file}. Currently, only filesystem object classes are
supported.

The Boolean express syntax supports the following keywords:



expression A Boolean expression of the constraint.

The Boolean express syntax supports the following keywords:

t1, r1, u1 Old type, role, and user
respectively

t2, r2, u2 New type, role, and user
respectively

t3, r3, u3 Process type, role, and user
respectively

Constraint expression syntax also supports the following operators:

== Set member of or equivalent

!= Set not member of or not
equivalent

eq (Roles keyword only) equivalent

dom (Roles keyword only) dominates

domby (Role keyword only) not
dominated by

incomp (Role keyword only)
incomparable

The complete semantic meaning and allowed parameters for each operator is described
in Table 7-2.

Validatetrans statements are valid only in monolithic policies and base loadable modules. They are
not valid in conditional statements and non-base loadable modules.

To date, we have seen no example use of the validatetrans constraint. This statement was added as
the cousin to the multilevel security (MLS) variant described in Chapter 8, "Multilevel Security," on
the future possibility of it being useful. To help understand how one might use this statement, let's
look at example. The key feature of the validatetrans statement is that it enables us to associate
old and new security contexts on a label change for file objects.

Suppose that we have a type user_tmp_t that in our policy we use as the type for ordinary untrusted
user programs' temporary files. We might, for example, want to ensure that a domain with privilege
to change all file labels (for example, a label maintenance program an administrator might run) does
not accidentally relabel a file with user_tmp_t as its type to certain highly critical types (say shadow_t
type, which is the type of the /etc/shadow file). Here's our constraint that would provide this

expression A Boolean expression of the constraint.

The Boolean express syntax supports the following keywords:

t1, r1, u1 Old type, role, and user
respectively

t2, r2, u2 New type, role, and user
respectively

t3, r3, u3 Process type, role, and user
respectively

Constraint expression syntax also supports the following operators:

== Set member of or equivalent

!= Set not member of or not
equivalent

eq (Roles keyword only) equivalent

dom (Roles keyword only) dominates

domby (Role keyword only) not
dominated by

incomp (Role keyword only)
incomparable

The complete semantic meaning and allowed parameters for each operator is described
in Table 7-2.

Validatetrans statements are valid only in monolithic policies and base loadable modules. They are
not valid in conditional statements and non-base loadable modules.

To date, we have seen no example use of the validatetrans constraint. This statement was added as
the cousin to the multilevel security (MLS) variant described in Chapter 8, "Multilevel Security," on
the future possibility of it being useful. To help understand how one might use this statement, let's
look at example. The key feature of the validatetrans statement is that it enables us to associate
old and new security contexts on a label change for file objects.

Suppose that we have a type user_tmp_t that in our policy we use as the type for ordinary untrusted
user programs' temporary files. We might, for example, want to ensure that a domain with privilege
to change all file labels (for example, a label maintenance program an administrator might run) does
not accidentally relabel a file with user_tmp_t as its type to certain highly critical types (say shadow_t
type, which is the type of the /etc/shadow file). Here's our constraint that would provide this



restriction:

validatetrans {file lnk_file} ( t2 != shadow_t or t1 != user_tmp_t );

Notice several features of this constraint. First, notice that we included both ordinary files and
symbolic links (lnk_file) because we do not want someone to use a link in place of a file. Now
examine the constraint expressions. In simple language, the constraint says that for a security
context change to be allowed for file and symbolic link objects, the new type may only be shadow_t if
the old type is not user_tmp_t. In other words, no domain type may be authorized to relabel a user
temporary file into the type of the shadow password file.

To expand this example, assume there are a subset of domain types that we do want to allow to
relabel user_tmp_t to shadow_t. (It is hard to imagine a situation where this would be advisable, but
you never know.) So, now we create an attribute relabel_any and assign it to those domain types we
want to grant this privilege. We then expand this constraint as follows:

validatetrans {file lnk_file}
        ( ( t3 == relabel_any) or
          ( t2 != shadow_t or t1 != user_tmp_t ) );

Now we have a set of domain types (those with the relabel_any attribute) that this constraint will not
restrict in any way.

Table 7-2. Allowed Arguments and Semantic Meaning for Validatetrans
Expressions

Operator Left Side Right Side Semantic Meaning

== t1 t2 Old type equals new type.Old type equals new type.

t1 (t2) type and/or
attribute name(s)

Old (new) type is a member of the set ofOld (new) type is a member of the set of
types indicated by names.

t3 type and/or
attribute name(s)

Process type is a member of the set ofProcess type is a member of the set of
types indicated by names.

r1 r2 Old role equals new role.Old role equals new role.

r1 (r2) role name(s) Old (new) role is a member of the set ofOld (new) role is a member of the set of
roles indicated by names.

r3 role name(s) Process role is a member of the set of rolesProcess role is a member of the set of roles
indicated by names.

u1 u2 Old user equals new user.Old user equals new user.

u1 (u2) user name(s) Old (new) user is a member of the set ofOld (new) user is a member of the set of
users indicated by names.



Operator Left Side Right Side Semantic Meaning

u3 user name(s) Process user is a member of the set ofProcess user is a member of the set of
users indicated by names.

!= t1 t2 Old type does not equal new type.Old type does not equal new type.

t1 (t2) type and/or
attribute name(s)

Old (new) type is not a member of the set
of types indicated by names.

t3 type and/or
attribute name(s)

Process type is not a member of the set ofProcess type is not a member of the set of
types indicated by names.

r1 r2 Old role does not equal new role.Old role does not equal new role.

r1 (r2) role name(s) Old (new) role is not a member of the set ofOld (new) role is not a member of the set of
roles indicated by names.

r3 role name(s) Process role is not a member of the set ofProcess role is not a member of the set of
roles indicated by names.

u1 u2 Old user does not equal new user.Old user does not equal new user.

u1 (u2) user name(s) Old (new) user is not a member of the setOld (new) user is not a member of the set
of users indicated by names.

u3 user name(s) Process user is not a member of the set ofProcess user is not a member of the set of
users indicated by name.

eq r1 r2 Exactly the same semantics as ==.

r1 (r2) role name(s) Exactly the same semantics as ==.

dom r1 r2 Source role was defined to dominate targetSource role was defined to dominate target
role using role dominates statement.

domby r1 r2 Target role was defined to dominate sourceTarget role was defined to dominate source
role using role dominates statement.

incomp r1 r2 Neither source nor target role dominates
the other.

u3 user name(s) Process user is a member of the set of
users indicated by names.

!= t1 t2 Old type does not equal new type.

t1 (t2) type and/or
attribute name(s)

Old (new) type is not a member of the set
of types indicated by names.

t3 type and/or
attribute name(s)

Process type is not a member of the set of
types indicated by names.

r1 r2 Old role does not equal new role.

r1 (r2) role name(s) Old (new) role is not a member of the set of
roles indicated by names.

r3 role name(s) Process role is not a member of the set of
roles indicated by names.

u1 u2 Old user does not equal new user.

u1 (u2) user name(s) Old (new) user is not a member of the set
of users indicated by names.

u3 user name(s) Process user is not a member of the set of
users indicated by name.

eq r1 r2 Exactly the same semantics as ==.

r1 (r2) role name(s) Exactly the same semantics as ==.

dom r1 r2 Source role was defined to dominate target
role using role dominates statement.

domby r1 r2 Target role was defined to dominate source
role using role dominates statement.

incomp r1 r2 Neither source nor target role dominates
the other.



7.4. Summary

Constraints provide global restrictions for certain permissions regardless of the allow rules
contained in the policy.

The constrain statement enables us to restrict permissions granted based on relationships
between source and target types, roles, and user identifiers.

The validatetrans statement enables us to restrict the ability to change object security
contexts based on relationships between the old, new, and process type, role, and user
identifiers. This statement is supported only for filesystem objects.



Exercises

1. Take the two constraints listed together on page 96 and write them as a single
constraint statement.

2. A common neverallow invariant rule is this:

neverallow domain ~domain : process transition ;

Write a constraint that is as close as possible to the equivalent meaning of this invariant.

3. Recall the example validatetrans statement from page 93:

validatetrans {file lnk_file}

( ( t3 == relabel_any) or

  ( t2 != shadow_t or t1 != user_tmp_t ) );

Let's suppose that you want to add a number of other types to the list of those you do
not to be relabeled from user_tmp_t. How would you change this constraint to achieve
this goal?
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In recent enhancements to SELinux, the constraint feature has been extended to implement an
optional multilevel security (MLS) policy. MLS is another form of mandatory access control, which is
built upon type enforcement (TE). In this chapter, we explore the optional MLS policy features.



8.1. Multilevel Security Constraints

MLS is another form of mandatory access control that is applicable to some security problems,
especially those associated with government-classified data control. Much of the early computer
security research was driven by the goal of implementing MLS access controls within operating
systems. SELinux provides optional support for MLS. Although type enforcement remains the
fundamental access control mechanism of SELinux, we can also enable the optional MLS features to
provide additional MLS-style mandatory access controls. In SELinux, MLS is an optional extension to
type enforcement; you cannot have MLS features without it.

Note

Fedora Core 5 (FC5) enabled the optional MLS features by default. In FC5, the MLS features
are used to implement so-called multicategory security (MCS) policy rather than a
traditional MLS policy modeled after government-classified systems. These two uses of the
MLS features alone show the flexibility of SELinux. In any case, all uses of MLS are built
upon the underlying TE security.

We enable MLS in SELinux by creating a binary kernel policy file that indicates that it is an MLS policy.
The primary method to create such a kernel policy is to compile the policy using the -M option to the
checkpolicy program. With this option, checkpolicy will create an MLS-enabled kernel policy, and
when loaded into the kernel, the kernel will enforce additional MLS constraints. You will find available
policy source build trees (for example and reference policies, see Chapters 11, "Original Example
Policy," and 12, "Reference Policy") manage whether the optional MLS features are available via a
Makefile or configuration file.

Note

As this book was preparing to be published, Tresys released a new version of the apol tool
(SeTools, release 2.4) that now supports examining MLS security contexts and rules. We do
not describe those features in this chapter, but they are simple to use after you become
familiar with apol.



8.2. Security Contexts with MLS

As discussed in Chapter 2 "Concepts," when MLS is enabled, the security context is extended with
two additional fields: a low and high security level. A security level itself has two fields: a sensitivity
and a set of categories. Sensitivities are strictly hierarchical reflecting an ordered data sensitivity
model, such as Top Secret, Secret, and Unclassified in government classification controls. Categories
are unordered, reflecting the need for data compartmentalization. The basic idea is that you need
both a high enough sensitivity clearance and the right categories to access data.

Warning

Do not confuse security level with sensitivity. A security level is a combination of a single
sensitivity and a set (zero or more) of categories. Sensitivities are strictly hierarchical and
can be compared using equivalence relationships (<, =, >). Security levels are not
hierarchical and are compared using a dominance relationship (dom, domby, eq, incomp),
which we briefly discuss in Chapter 2.

8.2.1. Defining Security Levels

In an SELinux policy, you define sensitivities using the sensitivity statement, as follows:

sensitivity s0;
sensitivity s1;
sensitivity s2;
sensitivity s3;

These statements define four sensitivities called s0, s1, s2, and s3. These names are a typical generic
sensitivity naming convention in SELinux. We could use any name you want here. The sensitivity
statement also supports the ability to associate additional alias names with a sensitivity that will be
treated the same as the core sensitivity name. For example:

sensitivity s1 alias unclassified;

Note

Recent improvement to SELinux, included in FC5, has added the utility semanage, which
among other features enables you to assign human-readable (and printable) names to the



policy sensitivities and categories. These human-readable names are translated by an
SELinux library and are not part of the kernel policy enforcement language. The file that
contains the printable mappings is /etc/selinux/[policy]/setrans.conf, where [policy] is
an installed policy.

Because sensitivities must be hierarchically related, we must specify in the policy the hierarchy of
sensitivities using the dominance statement, as follows:

dominance { s0 s1 s2 s3 }   # s0 is "low" and s3 "high"

The dominance statement lists the sensitivity names in order from lower to highest. Thus, in our
example, s0 is lower than s1, which is lower than s2, and so forth.

Warning

The absence of an ending semicolon in the dominance statement is the correct syntax (even
though most other policy statements end with a semicolon). In this case, the closing curly
brace unambiguously denotes the end of the statement. It is one of those legacy-language
design decisions that you have to keep in mind.

Categories are defined in a similar manner as sensitivities using the category statement. As with
sensitivities, categories may also have alias names. Unlike sensitivities, categories are not
hierarchically related (or related at all). So, there is no need to define any explicit relationship
between categories. The following statements are examples of the category statement:

category c0 alias blue;
category c1 alias red;
category c2 alias green;
category c3 alias orange;
category c4 alias white;

The final step in defining security levels in the policy language is to define allowed security level
combinations using the level statement. The level statement dictates how you may associate
categories with sensitivities. Remember that a combination of a single sensitivity and a set of
categories constitute a security level. Here are some examples of the level statement:

level s0:c0.c4;
level s1:c0.c4;
level s2:c0.c4;
level s3:c0.c4;

These statements enable you to combine any of the defined categories with all the defined



sensitivities from our earlier examples. You would generally have a single level statement for each
defined sensitivity that identifies the categories that may be associated with each sensitivity in a valid
security level.

In the preceding example, we associated all five defined categories (c0.c4) with all four defined
sensitivities. You can be more restrictive in this association:

level s0:c0.c2;
level s1:c0.c2,c4;

In this example, s0 may be associated only with categories c0, c1, and c2; and s1 with categories c0,
c1, c2 and c4 (but not c3). By now, you should have noticed that a dot (.) indicates an inclusive
range of categories, and a comma (,) indicates a noncontiguous list of categories.

Warning

Just because ranges of categories are specified using the range operator (.), this does not
mean that categories are hierarchically related. Instead, the range operator is just a
convenient way to refer to a set of categories. The ordering of the categories for the range
operator is just the order in which they are declared and has nothing to do with any
intrinsic ordering implied by their names.

So, for example, if you declare that categories in the order c1, c0, and c2, the expressions c0.c2
would mean c0 and c2, and not c1.

The level statement defines what combinations of sensitivities and categories constitute an
acceptable security level for the MLS portion of the SELinux policy.

Security Level Statements Syntaxes

There are four statements that together enable you to define security levels in an
SELinux policy. The full syntax of each are listed in this sidebar.

Sensitivity statement

This statement defines the policy sensitivity identifiers and optional alias identifiers.

sensitivity identifier [ alias alias_id [alias_id(s)] ] ;



identifier String identifier for sensitivity.

alias_id One or more additional string identifiers for
sensitivity aliases.

The sensitivity identifier and associated alias identifiers can be used interchangeably
within the policy.

Dominance statement

This statement defines the hierarchical relationship between all defined sensitivities:

dominance { identifier  identifier ...  identifier }

identifier A sensitivity identifier defined by a sensitivity
statement.

The ordering of sensitivities is from lower to highest. All defined sensitivities must be
contained within the dominance statement in order to define the complete sensitivity
hierarchy.

Category statement

This statement defines the policy category identifiers and optional alias identifiers:

category identifier [ alias alias_id [alias_id(s)] ] ;

identifier String identifier for category.

alias_id One or more additional string identifiers for
category aliases.

The category identifier and associated alias identifiers can be used interchangeably within
the policy.

Level statement

This statement defines the allowed combinations of sensitivity and category sets:



level sensitivity[:category_set] ;

sensitivity One of the defined sensitivity identifiers.

category_set A set of defined category identifiers. Categories can be listed
as comma-separated lists and/or ranges of categories using
the . range operator. For example, the category set c0.c3,c5
means all defined categories from c0 to c3 inclusively, plus
c5. Note that there is no implicit ordering of categories
according to name (for example, alphanumeric ordering);
instead, the range operator uses the order in which the
category identifiers are defined.

You may use only one level statement for each defined sensitivity. The category set is
optional; an unspecified category set means the "empty" category set. (That is, that
sensitivity may have no categories associated with it.) A valid security context may
associate only a sensitivity with the categories defined in the level statement for that
sensitivity.

Security level statements are valid only in monolithic policies and base loadable
modules. They are not valid in conditional statements and non-base loadable modules.

8.2.2. MLS Extensions to Security Contexts

For MLS SELinux systems, the security context is extended to include two security levels: a low or
current security level and a high or clearance security level. In general, the low level reflects the
current security level of a process or the sensitivity of data contained within an object. The high level
reflects the clearance level of the user identifier in the context (thereby determining the highest
possible security level allowed for the current level of any security context) or the maximum range of
data allowed for some so-called multilevel objects. When MLS is enabled, the extended security
context has the following format:

user:role:type:sensitivity[:category,...][-sensitivity[:category,...]]

Notice that the security levels require a single sensitivity and zero or more categories (that is,
categories are optional). In addition, when you specify a security context you need not specify the
high level. If unspecified, the high level will be equal to the low level, which is a common case for
objects.

For a security context to be valid, the high level must always dominate[1] the low level. In addition,
the categories associated with the sensitivities must be valid per the level statements in the policy.
So, for example, if we have the previous level statements:

[1] Recall from Chapter 2 that security levels are related using the "dominance" relationship. We discuss this relationship later in

this chapter.

level s0:c0.c2;



level s1:c0.c2,c4;

and user_u, user_r, and user_t are valid user, role, and type identifiers, the following security
contexts are invalid:

user_u:user_r:user_t:s0-s0:c2,c4 (c4 is invalid for s0)
user_u:user_r:user_t:s0:c0-s0:c2 (high does not dominate the low)



8.3. MLS Constraints

SELinux supports two MLS constraint statements, mlsconstrain and mlsvalidatetrans, which
together enable us to specify the optional MLS access enforcement rules. These two statements are
identical to their non-MLS counterparts except that they allow you to also express constraints based
on the security levels of a security context. You may only use the MLS constraints in policies that
have the optional MLS features enabled. You may use the non-MLS constraint statements from
Chapter 7, "Constraints," in either type of policy.

8.3.1. mlsconstrain Statement

The mlsconstrain statement is based on the constrain statement. We can use any of the syntax
discussed for the constrain statement in Chapter 7. The mlsconstrain statement adds new keywords
for stating constraints based on the low and high security levels of the source (l1 and h1) and target
(l2 and H2). The sidebar on page 171 contains the full syntax for the mlsconstrain statement.

mlsconstrain Statement Syntax

The mlsconstrain statement allows you to restrict specified permissions for specified
object classes by defining constraints based on relationships between source and target
security contexts that include the optional MLS features (that is, high and low security
levels). The full syntax for the mlsconstrain statement is as follows:

mlsconstrain class_set perm_set expression ;

class_set One or more object classes. Multiple object classes must be
separated by spaces and enclosed in braces ({ })for
example, {file lnk_file}. The special operators *, ~, and -
are not allowed in class sets for this statement.

perm_set One or more permissions. All permissions must be valid for
all object classes in the class_set. Multiple permissions must
be separated by spaces and enclosed in braces ({ })for
example, {read create}. The special operators *, ~, and -
are not allowed in class sets for this statement.

expression A Boolean expression of the constraint.

The Boolean expression syntax supports the following keywords:



t1, r1, u1, l1, h1 Source type, role, user, low level, and high level,
respectively

t2, r2, u2, l2, H2 Target type, role, user, low level, and high level,
respectively

Constraint expression syntax also supports the following operators:

== Set member of or equivalent.

!= Set not member of or not equivalent.

eq (Roles and security level keywords only)
equivalent.

dom (Roles and security level keywords only)
dominates.

domby (Role and security level keywords only) not
dominated by.

incomp (Role and security level keywords only)
incomparable.

The complete semantic meaning and allowed parameters for each operator is described
in Table 8-1along with those defined for the constrain statementChapter 7 (Table 7-1).

The mlsconstrain statement is supported only for optional MLS policies.

The mlsconstrain statement is valid only in monolithic policies and base loadable
modules. It is not valid in conditional statements and non-base loadable modules.

To illustrate the mlsconstrain statement, let's look at applying MLS to ordinary filesystem objects. As
a simple constraint suppose that we want to ensure that file objects may have only a single level.
(That is, the high and low levels must be the same.) We can accomplish this restriction with a
constraint such as this:

mlsconstrain file { create relabelto }
         ( l2 eq h2 );

Assuming that create and relabelto are the file permissions required to set the security level of a
file object, this constraint is sufficient to require that all files have high and low security levels that
are the same.

Let's now look at more central MLS policy restrictions. Recall the basic premise of MLS from Chapter
2, namely to prevent information from flowing "downward" from higher security levels to lower or
incomparable security levels. We do this by enforcing the "no read up, no write down" rules on all
objects. In SELinux, the low security level generally represents the current security level of processes
and objects. Thus, we have the following MLS constraint for files:



mlsconstrain file write ( l1 domby l2 );

In this statement we constrain write permissions for the file object class requiring the source
security level (l1) to be dominated by ("lower than") the object security level (l2). In other words, a
process can write files only at or "above" its current security level ("no write down").

This constraint is unfortunately too simple to ensure that MLS policy is enforced for file objects. First,
let's consider file object class permissions. Many permissions other than write allow a process to
"write" information to a file. For example, the append permission also allows information to flow from
the process to the file. Likewise, less obvious permissions, such as rename, also allow some form of
information to flow to the file (in this case, the name of the file). To be comprehensive, we need to
expand our constraint to cover all "write-capable" file permissions:

mlsconstrain file { write create setattr relabelfrom append
                                      unlink link rename mounton }
        ( l1 domby l2 );

We now include a list of several permissions besides the standard write permission, all of which allow
some form of information to flow from the source to the object. The constraint expression remains
the same.

This constraint is still too simple. We need to address the situation where we have a trusted domain
type that we need to give special permission to violate the "no write down" rule. Although you should
avoid such trusted domains, nearly all applications of MLS systems have had a need for them. To
accommodate this concept, we need to expand the constraint to allow for these trusted domains.

To implement trusted downgrading domains, we can create a type attribute, say mlsfilewritedown,
which identifies any such trusted domain. So now our constraint is this:

mlsconstrain file { write create setattr relabelfrom append
                                     unlink link rename mounton }
        ( ( l1 domby l2 ) or
        ( t1 == mlsfilewritedown ) );

Now the constraint allows an exception for any source domain (t1) that has the mlsfilewritedown
attribute (that is, trusted domains).

For a complete MLS policy, we also need to also restrict read access (that is, "no read up"). As with
write access, a number of permissions allow "read" access besides the read permission. For example
execute permissions essentially allows a process to "read" the contents of an executable file. Here is
a possible MLS read constraint for file objects:

mlsconstrain  file  { read getattr execute }
        ( ( l1 dom l2 ) or
          ( t1 == mlsfilewritedown ) );

As with the write restriction we have an attribute, mlsfilereadup, that allows for "read up" privilege
for those few privileged domain types that have the attribute.



In writing a complete MLS policy, you need to examine all object classes and their associated
permissions to ensure read and write restrictions are properly constrained. For example, in the
preceding "read" constraint, we might want to address all filesystem objects in a single statement, as
follows:

mlsconstrain { dir file lnk_file chr_file blk_file sock_file fifo_file }
                { read getattr execute }
        ( ( l1 dom l2 ) or
          ( t1 == mlsfilereadup ) );

You will typically find the MLS constraints for a given SELinux policy stated in a single source policy
file, typically called mls. We do not extensively cover MLS features of SELinux outside of this chapter;
if you are interested in additional information, find this file and examine it.

Table 8-1. Allowed Arguments and Semantic Meaning for Mlsconstrain
Expressions (Plus Those Defined for the Contrain Statement in Table 7-1

[Chapter 7])

Operator Left Side Right Side Semantic Meaning

== l1 l2,H1,H2 Source's low (current) security level equalsSource's low (current) security level equals
the target's low (l2), source's high (h1), or
target's high (H2) security level.

l2 h2 Target's low (current) security level equalsTarget's low (current) security level equals
the target's high security level.

h1 l2,h2 Source's high (clearance) security level
equals the target's low (l2) or high (h2)
security level.

!= l1 l2, h1, H2 Source's low (current) security level doesSource's low (current) security level does
not equal the target's low (l2), source'snot equal the target's low (l2), source's
high (H1), or target's high (h2) security
level.

l2 H2 Target's low (current) security level doesTarget's low (current) security level does
not equal the target's high security level.not equal the target's high security level.

h1 l2,h2 Source's high (clearance) security level
does not equal the target's low (l2) or high
(h2) security level.

eq l1 l2, H1, H2 Exactly the same semantics as ==.

l2 h2 Exactly the same semantics as ==.

H1 l2, h2 Exactly the same semantics as ==.

dom l1 l2, H1, H2 Source's low (current) security level
dominates the target's low (l2), source'sdominates the target's low (l2), source's



Operator Left Side Right Side Semantic Meaning dominates the target's low (l2), source's
high (H1), or target's high (H2) security
level.

l2 H2 Target's low (current) security level
dominates the target's high security level.dominates the target's high security level.

H1 l2, h2 Source's high (clearance) security level
dominates the target's low (l2) or high (h2)dominates the target's low (l2) or high (h2)
security level.

domby l1 l2, H1, h2 Source's low (current) security level is
dominated by the target's low (l2), source'sdominated by the target's low (l2), source's
high (H1), or target's high (h2) security
level.

l2 h2 Target's low (current) security level is
dominated by the target's high securitydominated by the target's high security
level.

h1 l2, H2 Source's high (clearance) security level isSource's high (clearance) security level is
dominated by the target's low (l2) or highdominated by the target's low (l2) or high
(h2) security level.

incomp l1 l2, h1, h2 Neither the source's low (current) security
level nor the target's low (l2), source's high
(h1), or target's high (h2) security level
dominate the other.

l2 H2 Neither the target's low (current) security
level nor the target's high security level
dominate the other.

H1 l2, h2 Neither the source's high (clearance)
security level nor the target's low (l2) or
high (H2) security level dominate the other.

8.3.2. mlsvalidatetrans Statement

We have one more MLS constraint we need to examine, the MLS variant of the validatetrans
constraint discussed in Chapter 7, namely mlsvalidatetrans. This statement is similar to the
validatetrans statement except that it introduces the six keywords l1 and h1, l2 and h2, and l3 and
h3, meaning old low and high security levels, new low and high security levels, and the source
process low and high security levels, respectively. The other difference between the two statements
is that the mlsvalidatetrans statement is more commonly used to support an MLS policy than the
validatetrans statement is in a typical TE policy. The full syntax of the mlsvalidatetrans statement
is in the sidebar on page 176.

dominates the target's low (l2), source's
high (H1), or target's high (H2) security
level.

l2 H2 Target's low (current) security level
dominates the target's high security level.

H1 l2, h2 Source's high (clearance) security level
dominates the target's low (l2) or high (h2)
security level.

domby l1 l2, H1, h2 Source's low (current) security level is
dominated by the target's low (l2), source's
high (H1), or target's high (h2) security
level.

l2 h2 Target's low (current) security level is
dominated by the target's high security
level.

h1 l2, H2 Source's high (clearance) security level is
dominated by the target's low (l2) or high
(h2) security level.

incomp l1 l2, h1, h2 Neither the source's low (current) security
level nor the target's low (l2), source's high
(h1), or target's high (h2) security level
dominate the other.

l2 H2 Neither the target's low (current) security
level nor the target's high security level
dominate the other.

H1 l2, h2 Neither the source's high (clearance)
security level nor the target's low (l2) or
high (H2) security level dominate the other.

8.3.2. mlsvalidatetrans Statement

We have one more MLS constraint we need to examine, the MLS variant of the validatetrans
constraint discussed in Chapter 7, namely mlsvalidatetrans. This statement is similar to the
validatetrans statement except that it introduces the six keywords l1 and h1, l2 and h2, and l3 and
h3, meaning old low and high security levels, new low and high security levels, and the source
process low and high security levels, respectively. The other difference between the two statements
is that the mlsvalidatetrans statement is more commonly used to support an MLS policy than the
validatetrans statement is in a typical TE policy. The full syntax of the mlsvalidatetrans statement
is in the sidebar on page 176.



mlsvalidatetrans Statement Syntax

The mlsvalidatetrans statement restricts the ability to change the security context of
specified supported objects by defining constraints-based relationships with old and new
security contexts and the security context of the source process. The full syntax for the
mlsvalidatetrans statement is as follows:

mlsvalidatetrans class_set expression ;

class_set One or more object supported classes. Multiple object
classes must be enclosed in braces ({ })for example, {file
lnk_file}. Currently, only permanent filesystem object
classes are supported.

expression A Boolean expression of the constraint.

The Boolean expression syntax supports the following keywords:

t1, r1, u1, l1, h1 Old type, role, user, low level, and high level,
respectively

t2, r2, u2, l2, h2 New type, role, and user, low level, and high level,
respectively

t3, r3, u3, l3, h3 Process type, role, user, low level, and high level,
respectively

The constraint expression syntax also supports the following operators:

== Set member of or equivalent

!= Set not member of or not equivalent

eq (Roles and security level keywords only)
equivalent

dom (Roles and security level keywords only)
dominates

domby (Role and security level keywords only) not
dominated by

incomp (Role and security level keywords only)
incomparable

The complete semantic meaning and allowed parameters for each operator is described
in Table 8-2 in addition to those defined for the validatetrans statement in Chapter 7
(Table 7-2).



The mlsvalidatetrans statement is supported only for optional MLS policies.

The mlsvalidatetrans statement are valid only in monolithic policies and base loadable
modules. They are not valid in conditional statements and non-base loadable modules.

As an example, for MLS we generally do not want file security levels to change; over the years of
experimentation with operational MLS systems, however, we have learned that some MLS
applications have evolved the need for a trustworthy application to change the security levels of
existing objects such as files. So, to enforce this restriction while allowing for those trusted
applications, we can use the mlsvalidatetrans constraint:

mlsvalidatetrans file
     ( ( l1 eq l2 ) or
       (( t3 == mlsfileupgrade ) and ( l1 domby l2 )) or
       (( t3 == mlsfiledowngrade ) and ( l1 dom l2 or l1 incomp l2 )) );

This constraint has a number of features. First, it has the basic requirement that when a file object
security context changes, its current (low) security level must be the same (l1 eq l2). However, it
provides for upgrading (mlsfileupgrade attribute) and downgrading (mlsfiledowngrade attribute)
privileges. Upgrading (that is, the old level l1 is dominated by the new level l2) is allowed if the
process domain type has the mlsfileupgrade attribute. Likewise, downgrading (that is, the old level
dominates or is incomparable to the new level) is allowed if the process domain type has the
mlsfiledowngrade attribute.

Table 8-2. Allowed Arguments and Semantic Meaning for Mlsvalidatetrans
Expressions (Plus Those Defined for the Validatetrans Statement in Table

7-2 [Chapter 7])

Operator Left Side Right Side Semantic Meaning

== l1 l2, h1,H2 Old low (current) security level equals the
new low (l2), old high (h1), or new high
(h2) security level.

l2 h2 New low (current) security level equals theNew low (current) security level equals the
new high security level.

h1 l2, H2 Old high (clearance) security level equalsOld high (clearance) security level equals
the new low (l2) or new high (H2) security
level.

!= l1 l2, H1, H2 Old low (current) security level does notOld low (current) security level does not
equal the new low (l2), old high (H1), orequal the new low (l2), old high (H1), or
new high (h2) security level.



Operator Left Side Right Side Semantic Meaning

!= l2 H2 New the old low (current) security level
does not equal the new high security level.does not equal the new high security level.

H1 l2, H2 Old high (clearance) security level does notOld high (clearance) security level does not
equal the new low (l2) or new high (h2)equal the new low (l2) or new high (h2)
security level.

eq l1 l2, h1, H2 Exactly the same semantics as ==.

l2 h2 Exactly the same semantics as ==.

h1 l2, H2 Exactly the same semantics as ==.

dom l1 l2, H1, h2 Old low (current) security level dominatesOld low (current) security level dominates
the new low (l2), old high (H1), or new high
(h2) security level.

l2 h2 New low (current) security level dominatesNew low (current) security level dominates
the new high security level.

h1 l2, H2 Old high (clearance) security level
dominates the new low (l2) or new highdominates the new low (l2) or new high
(H2) security level.

domby l1 l2, H1, H2 Old low (current) security level is dominatedOld low (current) security level is dominated
by the new low (l2), old high (h1), or newby the new low (l2), old high (h1), or new
high (h2) security level.

l2 h2 The new low (current) security level isThe new low (current) security level is
dominated by the new high security level.dominated by the new high security level.

h1 l2, h2 The old high (clearance) security level isThe old high (clearance) security level is
dominated by the new low (l2) or new highdominated by the new low (l2) or new high
(H2) security level.

incomp l1 l2, H1, h2 Neither the old low (current) security level
nor the new low (l2), old high (H1), or new
high (h2) security level dominate the other.

l2 h2 Neither the new low (current) security level
nor the new high security level dominate
the other.

h1 l2, h2 Neither the old high (clearance) security
level nor the new low (l2) or new high (h2)
security level dominate the other.

Note

Remember that, as of this writing, validatetrans and mlsvalidatetrans constraint
statements support only filesystem objects, specifically, dir, file, lnk_file, chr_file,

!= l2 H2 New the old low (current) security level
does not equal the new high security level.

H1 l2, H2 Old high (clearance) security level does not
equal the new low (l2) or new high (h2)
security level.

eq l1 l2, h1, H2 Exactly the same semantics as ==.

l2 h2 Exactly the same semantics as ==.

h1 l2, H2 Exactly the same semantics as ==.

dom l1 l2, H1, h2 Old low (current) security level dominates
the new low (l2), old high (H1), or new high
(h2) security level.

l2 h2 New low (current) security level dominates
the new high security level.

h1 l2, H2 Old high (clearance) security level
dominates the new low (l2) or new high
(H2) security level.

domby l1 l2, H1, H2 Old low (current) security level is dominated
by the new low (l2), old high (h1), or new
high (h2) security level.

l2 h2 The new low (current) security level is
dominated by the new high security level.

h1 l2, h2 The old high (clearance) security level is
dominated by the new low (l2) or new high
(H2) security level.

incomp l1 l2, H1, h2 Neither the old low (current) security level
nor the new low (l2), old high (H1), or new
high (h2) security level dominate the other.

l2 h2 Neither the new low (current) security level
nor the new high security level dominate
the other.

h1 l2, h2 Neither the old high (clearance) security
level nor the new low (l2) or new high (h2)
security level dominate the other.

Note

Remember that, as of this writing, validatetrans and mlsvalidatetrans constraint
statements support only filesystem objects, specifically, dir, file, lnk_file, chr_file,



blk_file, sock_file, and fifo_file object classes.



8.4. Other Impacts of MLS

This chapter describes the basic mechanisms that enable you to define an MLS policy in SELinux;
however, it does not describe a full policy for MLS. Unlike type enforcement, which is flexible and
adaptable, MLS is intended to strictly and inflexibly enforce a single security invariant ("no write
down, no read up"). This singular, inflexible focus is important for the protection of strictly
hierarchically related sensitive data (such as national secrets). However, it presents many challenges
that you must address as a secure system designer that are beyond the scope of this book.[2]

[2] For additional information on the challenges of building MLS trusted systems, see Building a Secure Computer System by

Morrie Gasser and Van Nostran Reinhold, New York, 1988, which is out of print but freely available at

http://nucia.ist.unomaha.edu/library/gasserbook.pdf.

Because in SELinux the MLS feature extends the security context, everywhere you specify a security
context you must now include security level information. One statement this impacts is the user
statement described in Chapter 6. For MLS systems, all users must have a defined clearance security
level, which represents the highest-level process users may run on their behalf. For MLS, the syntax
of the user statement changes to this:

user username roles role_set  level default_level range allowed_range ;

The username and role_set arguments are the same as before. However, we add two new keywords

that define the user's default login security level (level) and the range of security levels that a user
is allowed to run processes or log in (range). The default level is a single valid security level, and the
allowed range is a range of security levels from low to high. For example:

user joe roles user_r level s0 range s0 - s3:c0.c4;

This statement assigns the user joe with the default login level of s0 (the lowest sensitivity we
defined earlier, with no categories) and allows the user to log in at any level ranging from s0 with no
categories to s3 with all the categories we defined earlier (c0.c4). For example, the user is allowed to
log in with a security level of s1:c1.c2 but would not be allowed to log in with a security level s4:c0
because this latter level is not in the user's allowed range.

The other major area of impact of MLS is everywhere you label an object with a security context. In
Chapter 10, "Object Labeling," we discuss object labeling in more detail for non-MLS systems. Just
remember that in an MLS system you must extend the object security context to include low and
high security levels according to the syntax listed on page 105. You will find that the real challenge
with MLS systems is determining the appropriate security level to assign to each object.

http://nucia.ist.unomaha.edu/library/gasserbook.pdf


8.5. Summary

The SELinux policy language provides optional support for MLS through the use of additional
constraint statements and extensions to the security context.

For an MLS policy, you must define hierarchical sensitivities and nonhierarchical categories. A
valid security level is a combination of a single sensitivity and a set of categories (including the
empty set).

For MLS, the security context is extended with a low (current) and high (clearance) security
levels. A hard-coded invariant requires that the high security levels always dominate the low.

The primary purpose of an MLS policy is to implement the "no read down, no write up" invariant
for all objects. We can implement this invariant using the mlsconstrain statement, which is
exactly like the constrain statement except that it allows restrictions to also be based on
relationships between the source and target security levels.

The mlsvalidatetrans statement is exactly the same as the validatetrans statement except
that it also allows us to restrict security context changes based on the old, new, and process
security levels. This allows us to control the ability to change filesystem object security levels.

For a complete MLS security policy, you must implement MLS constraints on all relevant object
class permissions and extend the security context labeling everywhere a security context is
applied to an object.



Exercises

1. Assume the following sensitivity and category definitions:

sensitivity s0;
sensitivity s1;
sensitivity s2;

category c0;
category c1;
category c2;
category c3;
category c4;

level s0;
level s1:c0.c2;
level s2:c0.c4;

Also assume user_u, user_r, and user_t are valid user, role, and type identifiers.
Determine which of the following security contexts are valid and explain why or why not:

user_u:user_r:user_t:s0-s0:c0a.

user_u:user_r:user_t:s0-s1b.

user_u:user_r:user_t:s0-s1:c0.c4c.

user_u:user_r:user_t:s1:c0.c2-s2:c0.c1d.

user_u:user_r:user_t:s1-s2:c0,c4e.

2. Look again at the following MLS constraint:

mlsconstrain file { write create setattr relabelfrom append
        unlink link rename mounton }
        ( ( l1 domby l2 ) or
          ( t1 == mlsfilewritedown ) );

This constraint restricts the ability to "write down," but allows any domain to "write up."
Indeed, there is no MLS-related reason to restrict "write up" because it does not
constitute a downgrading of information, and there are valid uses of this capability to
build MLS-aware security applications. Nonetheless, some MLS system developers like to
provide a privilege to control "write up" just like "write down." As an exercise, change



the preceding constraint to control writing up and down.
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In this chapter, we explore conditional policies, created via policy statements and which enable us to
define rules enabled or disabled based on circumstances. In this chapter, we discuss the SELinux
policy language statements that support conditional policies and explore the use of conditional
policies.



9.1. Overview of Conditional Policies

Support for conditional policies was one of the first major functional enhancements to the SELinux
policy language after its initial release. Conditional policy statements enable us to define sets of policy
rules that are enabled only under the circumstances defined by a conditional expression, which is a
logical expression constructed using defined variables and logical operators.

Let's look at a contrived example. Suppose we have a mobile computer and want to define policy
rules that enable access for a particular program's domain type (for example, myprog_t) such that it
may access only the wired Ethernet network interface when the computer is docked and the wireless
network interface when the computer is undocked. To achieve this goal, we might write a conditional,
such as this:

bool docked true;
if (docked) {
      # rules to allow my_prog_t access to wired Ethernet device
} else {
      # rules to allow my_prog_t access to wireless device
}

In this example, we first declare a single Boolean variable, docked. We use this Boolean to indicate to
SELinux whether the device is docked. As part of the declaration, we give the Boolean docked a
default value of "true." We then create a conditional statement (if), which includes a conditional
expression (docked) and a true and optional false list of rules. This statement allows us to write the
allow rules for each case (that is, when the device is docked and when it is not docked). All we have
to do is change the value of the Boolean when we dock/undock the device (for example, a running
service might monitor this state and set the Boolean accordingly) to enable the appropriate set of
policy rules.

This simple example illustrates the main features of conditional policies. In the rest of this section, we
discuss how to define and change Boolean variables, list the syntax of conditional statements, and
show example uses of conditional policies.



9.2. Boolean Variables

What makes conditional policies "conditional" is the effect of conditional expressions. Conditional
expressions are formed by using one or more Boolean variables in conjunction with logical operators
and then changing the Boolean values to effect the value of the conditional expression, thereby
changing which set of rules in the conditional statement are in effect. Therefore, the first step in
writing conditional policies is creating the Boolean variables.

9.2.1. Defining Boolean Variables

We use the bool statement to define Boolean variables. For example, suppose we want to configure
the policy such that the ability for ordinary users to use the ping program can be turned on and off.
For this example, we need to define a Boolean variable, say user_ping, that we will use in a
conditional expression. To define this variable, we write the following statement:

bool user_ping false; # controls whether users may use ping program

The bool statement has two arguments, the name of the Boolean (user_ping) and its default value,
which can be true or false. In this case, the default value (false) means that ordinary users, by
default, cannot use ping (assuming our conditional statement is written correctly). You can see the
full syntax for the bool statement in the sidebar on page 186.

Bool Statement Syntax

The bool statement defines conditional booleans and their default value. The full syntax
for the bool statement is as follows:

bool bool_name default_value;

bool_name An identifier for the Boolean variable. The identifier can be any length
and can contain ASCII characters, numbers, or an underscore (_). It
must begin with an ASCII character.

default_value The default Boolean value of the variable, either TRue or false.

The bool statement is valid in monolithic policies, base loadable modules, and non-base
loadable modules. It is not valid in conditional statements.



9.2.2. Managing Booleans in a Running System

The ability to change Boolean variable values in a running system is what enables us to vary the
value of conditional expressions, and hence gives us conditional policies. Therefore, it is necessary for
the SELinux kernel to make Boolean variables available to running processes for changes. This is
different from any other component of the policy, which once loaded into the kernel is static until a
new entire policy is loaded. Booleans are individually accessible and changeable on the running
system.

The kernel exposes the Booleans via the selinux pseudo filesystem. This pseudo filesystem is the
primary interface between user space and the SELinux Linux Security Module (LSM) in the kernel.
The filesystem is typically mounted on /selinux/. All Boolean variables defined in the current policy
will show up as files in the booleans directory of this pseudo filesystem. So, for example, you would
be able to see the Boolean defined above as a file with a path name of /selinux/booleans/user_ping.

We use the Boolean files in the selinux filesystem to query and set the current values of Boolean
variables. If you view the contents of a Boolean file, you will always see a pair of numbers (either 0
or 1 for false or true), as follows:

# cat /selinux/booleans/user_ping
1 1

This first number indicates the current value of the Boolean variable; in this case, 1 for true. The
second number represents the pending value of the Boolean variable. The current value is the actual
value being used by the kernel for the Boolean and for determining the value of conditional
expressions. The pending is the value to which the Boolean's current value will be changed when
Booleans changes are committed.

We change the current value of a Boolean by changing the Boolean's pending value and then
committing the changes to the kernel. We change the pending value by writing a 1 or 0 to the
Boolean file, as follows:

# cat /selinux/booleans/user_ping   # current & pending values same (1)
1 1
# echo 0 > /selinux/booleans/user_ping # write a '0' to the file
# cat /selinux/booleans/user_ping      # pending value is changed (0)
1 0

As you can see, the pending value has now changed to 0, meaning false. The current value remains
the same. This means that the value of the Boolean user_ping is still true (1) even though you
changed its pending value to false (0). The reason is that changing Booleans requires a two-step
commit process. First, you change the pending value for those Booleans you want to change (the
default pending value is always the current value), and then you commit the pending values to the
current value. This allows you to change more than one Boolean and then commit all changes in one
step.

The file /selinux/commit_pending_bools is the interface for committing the pending values of all



Booleans as the current values. You cause the commit to occur by writing a 1 to this file, as follows:

# echo 1 > /selinux/commit_pending_bools # commit all pending values
# cat /selinux/booleans/user_ping
0 0

The first command writes the commit_pending_bools file, which causes the kernel to change the
current value for all Booleans to their pending value. As you can see by examining the user_ping
Boolean, the change we made earlier is now committed. The current value of this Boolean is now
false (0) as is the pending value. (Recall that the default pending value is always the current value.)

To reset the Boolean back to true, we just do the reverse:

# echo 1 > /selinux/booleans/user_ping    # set pending value true
# cat /selinux/booleans/user_ping         # see pending value changed
0 1
# echo 1 > /selinux/commit_pending_bools  # commit pending value
# cat /selinux/booleans/user_ping         # see current value changed
1 1

SELinux provides convenient commands for querying and changing Booleans without having to
remember their file locations. The getsebool command displays the state of a Boolean as active
(TRue) or inactive (false). For example:

# getsebool user_ping
user_ping > active

Note

Recent improvements in SELinux, available in Fedora Core 5 (FC5), have changed the
displayed values from the command getsebool to the more intuitive on and off rather than
active and inactive.

To see all Booleans defined in the running system and their state, you would use the -a option, as
follows:

# getsebool -a
docked > inactive
user_ping > active
...

We can also change the value of Booleans using the setsebool command:

# getsebool user_ping        # show current state



user_ping > active
# setsebool user_ping false  # change and commit current state
# getsebool user_ping        # show changed stated
user_ping > inactive

Notice that the setsebool command changes both the pending state and commits the change as the
current state. We do not need to run the two separate commands as you saw earlier when using the
setsebool command, nor do we need to know the full path name of the Boolean file.

We can also use the setsebool command to change multiple Booleans in a single transaction using an
alternative format for the arguments, such as this:

# getsebool user_ping docked        # show current state
user_ping > active
docked > inactive
# setsebool user_ping=0 docked=1    # change state of both
# getsebool user_ping docked        # show current state
user_ping > inactive
docked > active

Warning

The Booleans defined on your system depend on the policy loaded into the running kernel.
You will likely see different Booleans than those used here in our contrived examples. Do
not be confused by this. If you want, add these Booleans as an exercise, or play with the
Booleans defined in your policy.

9.2.3. Persistent Changes to Boolean Values

As previously discussed, Boolean variables are defined in the policy file along with their default state.
After the inclusion of Booleans into the SELinux policy language, a problem arose of how to change
the default state of a Boolean without having to re-create the policy. (The policy once written should
be a fairly static entity.) Thus the idea of a persistent value was introduced. A standard library used
by SELinux utilities provides a means for making persistent changes to Booleans by maintaining a file
with Boolean persistent values. The init process uses this file to override the policy defaults during
system initialization. In this way, we can make changes to the current values of Booleans that persist
across a reboot, without having to modify the static SELinux policy.

In Fedora Core 4 (FC4) and Red Hat Enterprise Linux version 4 (RHEL4) systems, loadable SELinux
policies are conventionally stored in the directory /etc/selinux/[pol_name/], where pol_name is a the
name of a subdirectory containing an SELinux policy and related files. In RHEL4, the file in a policy
subdirectory we want to discuss here is named booleans. This file contains names of Booleans and
their default override values. The init process reads this file for the active policy after loading the
policy into the kernel and then changes the current value for all Booleans listed in the file. If we look
inside this file, we would see contents something such as the following, depending on the associated



policy:

# cat booleans     # run in policy subdir, for example, /etc/selinux/strict/
ftpd_is_daemon=1
ftp_home_dir=1
ssh_sysadm_login=1
staff_read_sysadm_file=1
user_ping=1

We can see our user_ping Boolean here and other Booleans that require examining the policy to
understand their intended use. Therefore, to make a change to a Boolean current value consistent,
we would change the current value as previously discussed and edit the booleans file for the active
policy. Doing so will ensure that the change to the current value will persist across a reboot, if that is
the desired effect.

Note

When the policy is reloaded on a running system, the currently active state of the Booleans
is maintained instead of being reset to the default or persistent state. This ensures that
nonpersistent Boolean changes are preserved while a system is running.

In FC4, a new file was introduced named booleans.local, which is used in the same way as the
booleans file is used on RHEL4. The booleans file remains, but its purpose was changed to store
distribution-defined default Boolean values defined as part of the policy package. The booleans.local
file contains locally defined override values for Booleans that take precedence over the booleans file.
This change allows the default state in the booleans file to be easily changed when upgrading the
policy without impacting local customizations.

FC5 includes the loadable module infrastructure, which no longer has user-editable files for storing
persistent Boolean values. The tools for managing the policy, including the persistent mode of
setsebool (discussed below), interact directly with the module infrastructure to store the persistent
Boolean values. Therefore, in FC5, you should always use the setsebool or other system command to
change Boolean values.

The setsebool command provides a convenient option, -P, to make Boolean changes persistent. This
option works across RHEL4, FC4, and FC5. When this option is used with setsebool, all changes are
reflected in the active policy as a local override of the policy default values. (Otherwise, the change
affects only the running policy and will be reset to the default value at the next boot.) For example,
on an RHEL4 system, we have the following:

# getsebool user_ping              # show current running state
user_ping > active
# cat booleans | grep user_ping    # and persistent state
user_ping=1
# setsebool user_ping false        # change current state
# getsebool user_ping              # current stated changed
user_ping > inactive



# cat booleans | grep user_ping    # but persistent state did not
user_ping=1
# setsebool -P user_ping false     # persistent change with -P
# getsebool user_ping              # current state still false
user_ping > inactive
# cat booleans | grep user_ping    # now persistent changed too
user_ping=0

Note

You do not necessarily want to make a change to a Boolean current value persistent. It all
depends on your use of the Boolean. In some cases, you want to change, or toggle, the
Boolean, perhaps several times, on a running system but reset to its default value on a
reboot. In this case, you do not want to make the change persistent.



9.3. Conditional Statements

The reason we have Boolean variables in an SELinux policy is to allow us to write rules that are
conditionally enabled using the conditional statement (if). The conditional statement has a
conditional expression that is formed using Booleans and a true and optional false list of rules. If the
conditional expression resolves to true, the true list of rules is enabled, and the false list of rules is
disabled. If the conditional expression resolves to false, the opposite case prevails. We can change
the value of a conditional expression on a running system by changing the current values of the
Boolean variables the expression uses.

9.3.1. Conditional Expressions and Rule Lists

The simplest and most common form of a conditional statement has a single Boolean variable as its
conditional expression and a true list (but no false list) of rules. For example, continuing with our ping
example, we can write rules that allow user domains to use ping when the Boolean user_ping is
enabled with a conditional statement similar to the following:

# Example: controlling user ping via a Boolean
#   Assumptions (defined elsewhere in policy):
#      unpriv_userdomain: attribute for all ordinary user domains
#      ping_t: domain type for the ping process (which has necessary
#              network interface access for ping to work)
#      ping_exec_t: entrypoint file type of the ping executable

if ( user_ping ) {
    # domain transition access to allow user access
    allow unpriv_userdomain ping_t : process transition;
    allow unpriv_userdomain ping_exec_t : file { read getattr execute };
    # entrypoint might be redundant since ping_t should already have it
    # but adding it again is not harmful
    allow ping_t ping_exec_t : file entrypoint;

    # cause the transition to happen by default
    type_transition unpriv_userdomain ping_exec_t: process ping_t;
}

In this example, we see that all we have to do to enable access is give all ordinary user domain types
(all of which are assumed to be associated with the unpriv_userdomain attribute elsewhere in the
policy) domain transition access to the ping program domain type (ping_t). Elsewhere in the policy,
we would write the rules that provide the ping domain type the network access necessary for ping to
work. In the conditional policy, all we have to do is control the ability of user domain type to
transition to ping_t. We also need to ensure that the user's role is also authorized for the ping_t
domain type (see Chapter 6, "Roles and Users"). In this case, it is typical to unconditionally
authorized the ping_t domain type for the intended user role, and control whether this authorization



can be utilized via type transition permission as we illustrated previously.

Conditional (if) Statement Syntax

The conditional statement (if) specifies policy statements that are enabled/disabled
(that is, enforced or not enforced by the kernel) depending on the value of a conditional
expression. The full syntax of the conditional statement is as follows:

if (cond_expression) { true_list } [  else { false_list } ]

cond_expression A conditional expression made up of one or more Boolean
variables with logical operators. Supported logical operators
are listed in Table 9-1. Boolean variables must be defined
using the bool statement.

TRue_list, false_list A list of rules that are conditionally enabled or disabled
depending on the value of the conditional expression. When
the conditional list is true, the true list of rules is enabled
(and the false disabled). When false, the opposite is the
case. The false list is optional. The kernel will enforce only
conditional rules that are enabled. The supported rules for
these lists are allow, auditallow, dontaudit,
type_transition, and type_change.

The conditional statement is valid in monolithic policies, base loadable modules, and non-
base loadable modules.

At the time of this writing, conditional expressions may not be nested.

Let's look at another example that uses both the true and false list of rules. Suppose that we want to
control the ping_t domain such that the docked Boolean introduced earlier determines what access
the ping program has (that is, access to wireless Ethernet devices only when "not docked"). The
following policy statements are a partial solution to this objective:

# Example: restricting ping's access based on docked state
#   Assumptions (defined elsewhere in policy):
#      docked: Boolean indicating docked state
#      ping_t: domain type for the ping process
#      wired_netif: attrib for all wired netif types
#      wireless_netif: attrib for all wireless netif types

# Allowed wired access when docked, wireless otherwise
if ( docked ) {
    allow ping_t wired_netif:netif { tcp_send tcp_recv udp_send
              udp_recv rawip_send rawip_recv };



} else {
    allow ping_t wireless_netif:netif { tcp_send tcp_recv udp_send
              udp_recv rawip_send rawip_recv };
}

# Remaining network and other access needed regardless of interface
allow ping_t self:capability { net_raw setuid };

# etc., remaining rules not listed for simplicity

In this example, we control access to the two kinds of network interfaces, including raw access
(rawip_send and rawip_recv), using the conditional statement. We provide other access needed by
ping regardless of network interface using unconditional rules (that is, rules not within a conditional
statement, which are always enabled regardless of the value of any Boolean).

Warning

In SELinux, type enforcement (TE) rules are always additive; that is, they always add
permissions for a source-target-class triple. There is no way to remove permissions from a
policy using conditional statements. Because no permissions are allowed by default, this
means that you must be careful when writing allow rules not to add a permission in one
place in the policy and then try to make it conditional in another. The unconditional rules
(that is, those not within a conditional statement) will always take precedence. Therefore, if
you try to control a permission in a conditional rule that is already allowed by an
unconditional rule, the conditional rule will have no effect. Whereas the conditional rule will
be enabled/disabled according to the conditional expressions, the nonconditional rule will
always allow the permission.

Finally, let's examine one additional example where we use a more complex conditional expression.
Suppose we want to expand the notion of user_ping above to control whether ping is allowed for any
user domain and not just for ordinary user domains. So, instead of a Boolean named user_ping, we
will use a Boolean named allow_ping to better represent our intent. Further, we want ping accessible
only when the computer is docked. Therefore, we create the following partial solution:

# Example: restricting ping based on docked state and allow Boolean
#   Assumptions (defined elsewhere in policy):
#      docked: Boolean indicating docked state
#      allow_ping: Boolean indicating whether ping is allowed
#      ping_t: domain type for the ping process
#      ping_exec_t: entrypoint file type of the ping executable
#      wired_netif: attrib for all wired netif types
#      userdomain: attrib for all user domains (priv & unpriv)

# Allowed wired access when docked if allowed
if ( allow_ping && docked ) {
    # domain transition permission



    allow userdomain ping_t : process transition;
    allow userdomain ping_exec_t : file { read getattr execute };
    allow ping_t ping_exec_t : file entrypoint;
    type_transition userdomain ping_exec_t: process ping_t;

    # wired netif access for ping
    allow ping_t wired_netif:netif { tcp_send tcp_recv udp_send
              udp_recv rawip_send rawip_recv };
}

This example shows the use of a two Booleans and a logical operator (&&) in a conditional expression.
In this case, the values of both Booleans control whether this condition is true and the associated
allow rules are enabled. Conditional expressions support a common set of C-like logical operators and
typical parentheses rules for precedence. The logical operators supported for conditional expressions
are listed in Table 9-1.

Table 9-1. Supported Operators for
Conditional Expressions

Operator Syntax Semantic

&& bool_1 && bool_2 Logical and

|| bool_1 || bool_2 Logical or

^ bool_1 ^ bool_2 Logical exclusive
or

! !bool_1 Logical not

== bool_1 == bool_2 Are equivalent

!= bool_1 != bool_2 Are not equivalent

9.3.2. Conditional Statement Limitations

The conditional policy language extensions have several significant limitations that were known at the
time the extensions were developed. In reality, these limitations have not, as yet, resulted in any
practical limitations. Nonetheless, you should be aware of the limitations. Some of these limitations
will likely be removed or improved as greater use of conditional policy comes into being.

9.3.2.1. Supported Statements

As of now, the only policy statements allowed within a true or false list of a conditional are the
following:

allow (type allow rules, and not role allow rules)



auditallow
dontaudit
type_transition
type_change

These are the TE policy rule statements. The reason for this limitation is that conditional policies were
really developed to support conditional TE policies. Therefore, the TE rules were supported. This
makes sense because what we are talking about is enabling and disabling rules that allow access,
audit access, and setup access defaults.

In particular, we do not allow you to define types or other policy identifiers within a conditional
expression. It is difficult to imagine good policy design where policy components are defined based on
runtime conditions (as controlled by Booleans). Instead, policy component identifiers such as types
are either defined or not in a given policy. They are not "conditional." This reasoning also explains
why user and role declarations, and indeed Boolean declarations, are not supported within conditional
statements.

Some unsupported statements would be valuable within conditional statements. For example, we are
finding that the typeattribute statement, which associates a previously defined attribute with a
previously defined type, is a useful statement to allow within conditional true/false list. Because
adding an attribute to a type is essentially adding rules that allow access to/from that type, it makes
sense that one might want to include this in a runtime conditional. The reason why the typeattribute
statement was not supported in the initial conditional policy implementation is simply that the
typeattribute statement itself was not supported in the policy language at the time. We expect this
and other statements will eventually be supported by the policy compiler.

Warning

Do not confuse policy build-time options with runtime conditionals. It is common to use a
scripting/macro language (for example, m4) to provide build-time options (see Chapters 11,
"Original Example Policy," and 12, "Reference Policy"). For example, you can control
whether certain domain types and their associated rules are included in a given policy (for
example, because our intended system does not use the programs for which those domain
types were designed). In this case, we would exclude all the rules and the associated type
declarations from the compiled policy. This is a compile-time customization, which is
entirely different from a runtime conditional. In the latter case, we include all the rules and
types we want, but allow some rules (but not types) to be toggled on/off based on
conditions as controlled by Booleans.

9.3.2.2. Nesting Conditional Statements

Currently, the conditional statement syntax does not support nesting. So, for example, the following
policy statements would cause a compiler error:

# These statements would currently fail due to nonsupport for nesting



if (docked) {
      # docked statements
      if (allow_ping) {
            # docked and allow statements
      }
} else {
    # undocked statements
}

Instead, we would have to write this as more verbose separate statements, such as the following:

# This workaround with no nesting works!
if (docked && allow_ping) {
      # docked and allow statements
}

if (docked) {
      # docked statements
} else {
      # undocked statements
}

We expect support for nesting conditional statements to be added to the language soon, possibly by
the time this book is published.



9.4. Examining Booleans and Conditional Policies with
Apol

We can use apol to more easily examine conditional policy statements and the associated Booleans.
Apol proves particularly useful when trying to understand the effects of conditional policy statements
and when the same condition is repeated several places within the policy.

Figure 9-1, we show how to use apol to examine defined Booleans within a policy. The Booleans tab
under the Policy Components tab shows all Booleans and their default and current values. Apol also
enables you to change the current value of a Boolean, which proves useful when exploring conditional
policy rules, as you will see shortly.

Figure 9-1. Examining Boolean variables using apol

[View full size image]

More interesting is when you are searching the policy rules. In the TE Rules tab under the Policy



Rules tab, you can configure apol to show all rules, whether enabled or disabled, and show their
current state, as shown in Figure 9-2. Most rules are not in conditional statements and will not show
a current state. However, those that are in conditional statements will have their current state
(enabled/disabled) so indicated, as shown in Figure 9-2.

Figure 9-2. Viewing disabled conditional rules in apol

[View full size image]

You can use the Booleans tab to change the current value of a Boolean to experiment with the effects
within apol. For example, in Figure 9-3, we changed the current value of user_ping from its default
value of false to a current value of true. This will then effect what rules are enabled or disabled, as
shown in Figure 9-4, where rules that were previously disabled now become enabled.

Figure 9-3. Changing current state of Boolean value in apol

[View full size image]



Figure 9-4. Changing current Boolean values in apol changes the
enabled/disabled state of rules

[View full size image]

Finally, by using the Conditional Expression tab under the Policy Rules tab, you can search for entire
conditional statements by searching for Booleans, as illustrated in Figure 9-5. Apol will show you all
conditional expressions that use the provided Boolean variable and their true and false list of rules.
Further, the tool will collapse like conditionals (for example, if there are five conditionals all with the
same conditional expression, apol will show them as one combined conditional), making it easier to
understand the entire set of related conditional rules. As with the rule search shown in Figure 9-4, the
current state of the Boolean variables will affect the result of this search.



Figure 9-5. Searching conditional expressions by Boolean name within
apol

[View full size image]



9.5. Summary

Conditional statements allow you to create policy rules that can be enabled or disabled by
changing Boolean variable values on a running system. Rules that are not within a conditional
statement (typically the vast majority of rules in a system) are unconditional and always
enabled.

Boolean variables are defined in the policy using the bool statement, along with the default
value for each Boolean.

All defined Booleans in the running policy also have filenames in the selinux filesystem, usually
mounted at /selinux/booleans/. These files indicate the current and pending value for each
Boolean. To change the current value of a Boolean, you would write the new value (1 or 0) into
this file and then make the change effective by writing a 1 to the file
/selinux/commit_pending_bools. The commands getsebool and setsebool provide a convenient
and stable way for changing these values without remembering the various filenames.

Booleans support a persistent value that will override the default value in the policy on a reboot.
The persistent value allows you to change the effective default value without having to
modifying the policy itself. The easiest way to make a persistent change to a Boolean value is to
use the setsebool -P command.

The conditional statement (if) allows you to express a logical conditional expression using a
defined Boolean variable and a true and optional false list of rules. These rules will be
enabled/disabled by the kernel depending on the value of the conditional expression, which in
turn depends on the current values of the Booleans the expression contains.

The only statements currently supported in a conditional statement true/false list are allow,
auditallow, dontaudit, type_transition, and type_change.

At present, you cannot nest conditional statements. This limitation is likely to change in the near
future.



Exercises

1. Explain the differences between the default, current, pending, and persistent values of a
Boolean variable.

2. Suppose that our policy has three Booleans defined: bool1, bool2, and bool3. Now take
a look at the following commands:

# cd /selinux/booleans
# cat bool1
0 1
# cat bool2
1 1
# cat bool3
1 0

What are the current values of all three Booleans?

3. Take the set of comments from the previous question, and add the following command:

# echo 1 > /selinux/commit_pending_bools

Now what are the current values of the three Booleans?

4. One use of conditional policies is to control the level of auditing performed by SELinux by
enabling and disabling packages of audit rules. Suppose we want to create a Boolean
(enhanced_audit) to control auditing of access attempts (success and denial events).
Further, suppose that there are two kinds of events, among others, we want to capture
for enhanced auditing: transitions into any domain type and any use of the ping program
to access the network. Write a partial policy to achieve these goals. Assume that there
are two attributes in your policy: domain, which is associated with all domain types; and
netif_type, which is associated with all the types used for network interface objects.
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For the SELinux policy to work, all object instances must be labeled with a security context. In this
chapter, we discuss the various means of applying security contexts to object instances, including
how security contexts are assigned when objects are created and the later modification of those
labels (called relabeling).



10.1. Introduction to Object Labeling

All objects in SELinux have an associated security context from the time they are created until they
are destroyed. This property is central to the ability of SELinux to enforce access control. For
example, let's look at the security context of a file we first discussed in Chapter 2, "Concepts:"

# ls -Z /etc/shadow
-r-------  root   root  system_u:object_r:shadow_t  shadow

This example demonstrates the program ls displaying the security context for the file /etc/shadow.
The security context associated with an object, in this case system_u:object_r:shadow_t, is the only
attribute SELinux uses in access control decisions. Therefore, it is fundamentally important that this
and all objects have the correct security context assigned to them.

Until this point, we have generally discussed objects with the assumption that they have a security
context, with little or no mention of how that security context was determined and applied. This
reflects the goal that labeling should not be a normal concern when using an SELinux system. Users
and administrators can use SELinux systems in much the same way they use standard Linux systems
without having to be concerned with security contexts. In addition, this goal allows nearly all
programs to run unmodified on SELinux.

The SELinux policy language includes features, such as type_transition rules for file and domain
transitions, that make labeling decisions automatic and largely transparent. However, sometimes,
like during system administration, policy development, and system installation, labeling becomes an
issue with which we need to concern ourselves. As policy writers, we must carefully craft labeling
policy statements to ease label management at runtime.

An object is labeled on an SELinux system in four basic ways:

Policy statements The SELinux policy language includes features, such as type_transition
rules, that specify behavior for object labeling decisions.

Hard-coded defaults Most object classes have some type of default labeling behavior encoded
within the object managers. For example, by default when a process creates a new socket, the
new socket has the same security context as its creating process.

Program-requested labeling For some object classes, SELinux provides a variety of
application programming interfaces (APIs) that allow programs to explicitly request a label, both
for new and existing object instances. For file-related objects that are stored on filesystems that
support labeling, these APIs are used by SELinux utilities that initialize and repair file labels (for
example, by the rpm package manager when installing the system).

Initial SIDs SELinux has a set of initial security identifiers (initial SIDs) used to label a few
objects and as a failsafe label when an object would otherwise have a missing or invalid label.

For many objects, a combination of all these behavior types may be used to determine the label of a



new object. Labeling decisions also use information from the execution environment (for example,
the security context for the process and related object instances) to compute a security context for
new objects. In all cases, the policy must allow the appropriate access for the labeling to occur.
Object labeling behavior usually controls only how object labeling is attempted and not whether it is
allowed.

We have already discussed some of the policy rules (that is, type and role transition rules) that
support labeling decisions in Chapter 2, Chapter 5, "Type Enforcement," and Chapter 6, "Roles and
Users." In this chapter, we discuss additional policy statements for labeling network-related object
classes. As you will see, these statements are object class-specific and do not apply to all object
classes.

The default labeling behaviors for each object class are hard-coded into the object managers that
implement the classes. These defaults are used in the absence of relevant policy labeling rules and
for those object classes that have no associated policy labeling rules. The default for most object
classes is to inherit the security context of the creating process and/or containing object. For
example, file-related objects inherit the type of the containing directory, a hard-coded role
(object_r), and the SELinux user of the creating process.

In the remainder of this chapter, we discuss the many ways that a policy writer must address object
labeling.



10.2. File-Related Object Labeling

In SELinux, labeling most often refers to the labeling of file-related objects because this is the only
form of label management that a normal user or administrator is likely to encounter. Much of the
challenge with file labeling comes from the sheer number of files present on a normal system
combined with the customization of how those files will be stored in the directory structure. The
variety of filesystems available for Linux also contributes to the complexity. Common filesystems
include traditional, native filesystems intended to store data on hard disks and removable media (for
example, ext3 and XFS); non-native filesystems present for compatibility with other systems (for
example, iso9660 and vfat); and in-memory, pseudo filesystems used for communication between
the kernel and userspace (for example, proc and sysfs).

How file-related objects are labeled varies according to the intended purpose of the filesystem and
the specific semantics of how the objects are created, stored, and used. For example, files stored
persistently to hard disk using the ext3 filesystem are labeled when created and the security context
stored with the file. In contrast, files in the proc filesystem exist only at runtime and must have their
labels generated at runtime instead of stored persistently.

SELinux Mount Options

The context mount option (filesystems mounted with this option are often referred to in
documentation as "mountpoint labeled") overrides the labeling behavior of any filesystem
and applies a single security context to all of the file-related objects it contains. For
example, consider the following mount command:

mount -t nfs -o context=user_u:object_r:user_home_t
          gotham:/shares/homes/ /home/

In this example, the mount option context= user_u:object_r:user_home_t instructs
SELinux to apply the specified security context to all file-related objects in the nfs
filesystem mounted on the /home/ directory. The security context specified in the option,
user_u:object_r:user_home_t in this example, will be applied to both existing and new
files.

The context mount option works for all filesystems regardless of what labeling behavior
they support or is specified in the policy. For example, filesystems that would normally
use extended attribute labeling, such as ext3, can be mounted using the context option.
(Although when mounted with the context option, new inodes do not receive any SELinux
attributes on disk and existing on-disk inodes are not changed.) This is useful for
removable media transferred from non-SELinux systems.

There are two related filesystem mount options, fscontext and defcontext, that may be



used together or separately instead of the context option. The fscontext option is used
to set or override the filesystem object instance security context (for example, to set the
filesystem security context for an ext3 filesystem to something other than the default set
for ext3 filesystems in the policy). The defcontext option is used to override the default
file security context for a given filesystem. (The default file security context for
filesystems is normally the file initial SID, which is explained later in this chapter.)

The standard nosuid mount option, besides negating standard Linux setuid/setgid
behavior, also changes the behavior of SELinux for files on a filesystem. The nosuid
option disables SELinux security context transitions for files labeled with enTRypoint
types on the filesystem. It is possible to use the context mount option to achieve the
same effect (that is, force all files to be labeled with an untrusted type), but the nosuid
option is another good choice.

SELinux supports four kinds of labeling for file-related objects to address the various types of
filesystems: extended attribute, task-based, transition-based, and generalized security contexts. The
primary difference between these mechanisms is how SELinux determines the initial label of inodes
for the filesystem. Security-extended attribute labeling also stores security contexts persistently to
disk. Table 10-1 lists the filesystem labeling mechanisms and the filesystems that use each labeling
mechanism on a Fedora Core 4 (FC4) system.

Table 10-1. Kinds of Filesystem Labeling Mechanisms and Associated
Filesystems

Labeling
Mechanism

Filesystems

Extended
attributes

ext2, ext3, xfs, jfs, reiserfs

Task-based pipefs, sockfs

Transition-based devpts, tmpfs, shm, mqueue

Generalized proc, rootfs, sysfs, selinuxfs, autofs, automount, usbdevfs, iso9660, udf,
romfs, cramfs, ramfs, vfat, msdos, fat, ntfs, cifs, smbfs, nfs, nfs4, afs,
debugfs, inotifyfs, hugetlbfs, capifs, eventpollfs, futexfs, bdev, usbfs,
nfsd, rpc_pipefs, binfmt_misc

The kind of labeling is specified per filesystem in the policy using either the filesystem use statements
or the generalized filesystem labeling support statement, normally called the genfscon statement.
The SELinux policy language supports three filesystem use statements: fs_use_xattr, fs_use_task,
and fs_use_trans, which specify extended attribute, task-based, and transition-based labeling
behaviors, respectively.

The syntax for the all three filesystem use statements is identical (see the sidebar on page 211). As
an example, consider the following fs_use_xattr statement:



fs_use_xattr ext3 system_u:object_r:fs_t;

This statement indicates that the ext3 filesystem (that is, all instances of ext3 on the system) will be
labeled using security-extended attributes, and the filesystem object instance associated with all ext3
filesystems will be labeled with the security context system_u:object_r:fs_t. The filesystem name,
ext3 in this example, is the same as that understood by the kernel and the mount(8) command.
These names are listed in the file /proc/filesystems.

The generalized filesystem labeling support statement (genfscon) specifies both that the filesystem
will use generalized filesystem security context labeling and how the individual file-related objects in
that filesystem are labeled. The genfscon syntax is more complicated; we describe it later in this
section.

Filesystem Use Statements Syntax

The filesystem use statements specify the labeling mechanism to be used for a kind of
filesystem. The filesystem use statements begin with one of three keywords, which are
marked in brackets. There can be only one filesystem use statement for each filesystem.
The full syntax of the statements are as follows:

[fs_use_xattr | fs_use_task | fs_use_trans] fs_name fs_context

fs_name The name of the filesystem that will use the specified
labeling mechanism (for example, ext3). The filesystem
names are the same as those understood by the kernel and
mount(8) command and are listed in /proc/filesystems.

fs_context The security context for the filesystem object instance
associated with this filesystem.

The fs_use_xattr statement indicates that the filesystem will provide security context
information (through its getxattr(2) method) using extended attributes. The
fs_use_task statement indicates that the filesystem will use task-based labeling
behavior, and the fs_use_trans statement indicates that the filesystem will use
transition-based labeling behavior. The filesystem implementation must support the
labeling behavior when using fs_use_xattr. (In the other cases, SELinux handles the
labeling.)

The filesystem use statements are valid only in monolithic policies and base loadable
modules. They are not valid in conditional statements or non-base loadable modules.

10.2.1. Extended Attribute Filesystems (fs_use_xattr)



Most native, disk-based Linux filesystems use extended attribute labeling. This labeling mechanism
extends the standard extended attribute mechanisms to support setting, retrieving, and storing the
security contexts associated with all file-related objects. (See the sidebar on page 212 for more
details.) Filesystems that use this labeling mechanism support program-requested labeling and, when
stored to persistent media, preserve the security contexts across reboots.

More on Security Contexts Using Extended Attributes

File-related resources stored in native Linux filesystems typically have important
information about the resource, such as ownership and access mode, stored in a special
data structure called an inode. In recent versions of Linux, additional information is
associated with inodes in the form of extended attributes. Extended attributes, which
store the additional information as name/value pairs, are used for storing system
information, such as access control lists (ACLs), or other data required by some
application or service. SELinux uses extended attributes to store the security context of
all file-related objects.

The name portion of extended attributes is divided into multiple namespaces to allow
different kinds of data to easily coexist. SELinux uses the security namespace, denoted
by the prefix security., to store security contexts. This namespace is intended to be
shared by all Linux Security Module (LSM) modules, so SELinux uses the name selinux
to store the security contexts in the security namespace. To illustrate, let's directly
examine the extended attributes of a file on SELinux:

# getfattr -n security.selinux /etc/shadow
# file: etc/shadow
security.selinux="system_u:object_r:shadow_t\000"

As you can see, the security context is stored directly as a string. Indeed, examining the
extended attribute is how the ls -Z command displays security contexts for file-related
objects. We recommend always using the libselinux API (for example, getfilecon(3))
instead of using the extended attribute API directly because the storage of the security
context may change over time.

10.2.1.1. Labeling Behavior for Extended Attribute Filesystems

Labeling decisions for extended attribute filesystems use a combination of policy rules and security
context inheritance. By default, all new file-related objects inherit the type of the containing directory
and the user of the creating process. The role is always set to the special object role object_r. If a
type_transition rule matches the type of the creating process and the type of the directory that will
contain the new object, the default type specified in that rule will be used for the type of the new file-
related object. The rest of the security context is set in the same way as if there were no
type_transition rule.

Program-requested labeling allows processes to request a specific security context for a new file using



the setfscreatecon(3) library call. In this situation, the object will be created with the requested
security context unless the process lacks the required access. Normally, only applications that extend
SELinux or are an SELinux utility (that is, so-called SELinux-aware applications) use this feature; files
created by standard applications receive the correct security context through the automatic labeling
decision described previously.

In addition to setting security contexts on creation, file-related objects can be relabeled for extended
attribute labeled filesystems. This is done with the setfilecon(3), lsetfilecon(3), and
fsetfilecon(3) library calls. Explicitly changing the label of an object requires appropriate
relabelfrom and relabelto permissions, which should be tightly controlled by the policy. (See the
sidebar on page 213 for more information.)

Policy Control of Object Labeling

The ability to change the security context of an object is a powerful privilege. Recall from
Chapter 4, "Object Classes and Permissions," that the policy controls changing of types
on file-related objects with relabelfrom and relabelto permissions for most object
classes. The relabelfrom permission controls the starting type for the object, and the
relabelto permission controls the resulting type; a domain must have both permissions
to successfully relabel an object. For example, consider the following allow rules:

allow user_t user_home_t : file { relabelfrom };
allow user_t httpd_user_content_t : file { relabelto };

These allow rules state that a process with the type user_t is allowed to relabel files
from the type user_home_t to the type httpd_user_content_t.

The relabelto and relabelfrom permissions control only changes to the type of the
object. We saw in Chapter 7, "Constraints," that changing the user and role portions of
security contexts can be controlled by constraints. For example, consider the following
constraint:

constrain file { create relabelto relabelfrom }
( u1 == u2 or t1 == privowner );

This constraint states that when a process requests create relabelto, or relabelfrom
permission on a file, the user portion of the security context must match that of the
process or the process type must have the privowner attribute.

10.2.1.2. Managing Security Contexts in Extended Attribute Filesystems (File Contexts)

The labeling of file-related objects using extended attributes differs from the other filesystem and



most other nonfile object classes. The security contexts using extended attributes are initialized,
normally during installation with a package manager such as rpm, using runtime labeling requests.
The runtime labeling requests are directed by one or more configuration files, called file context files,
which list paths, or partial paths, and security contexts. The file context files are not included directly
within the policy but are stored with it on the filesystem in a standard location (see Chapter 13,
"Managing an SELinux System"). By using the appropriate file context files for a policy, the file-
related object security contexts can be correctly initialized based on path name. Initialization puts the
system in a known, secure state. After initialization, the automatic labeling decisions take over and
ensure that any files created subsequently are correctly labeled and a secure state is always
maintained.

This label management strategy is used to separate the policy, which deals primarily with types and
security contexts, from path names and filenames. This strategy has several advantages. First, the
layout of filesystems can vary greatly because of differences between distributions or user
customization. By removing this aspect of variability from the policy, a single policy can be more
easily adapted to multiple systems.

More important, in native Linux filesystems, file-related objects are not uniquely identified by a single
path name. Hard links, chroot environments, and per-process filesystem namespaces all mean that a
single file-related object could be identified by several path names. If the policy were enforced within
the kernel using path names directly, there would be no way to determine which of these names was
the correct one to use, possibly leading to a process having different access to the same object
depending on how the access was attempted. For this reason, SELinux associates the security
context directly with the object and uses only paths to initialize the security context. Only if
initialization occurs when the system is in a protected, known-secure state (for example, during
installation) is it safe from this ambiguity.

The format of a line in the file context files is a regular expression representing one or more file-
related object paths, an optional object class specification, and a security context. For example,
consider the following portion of a file context file:

1  /bin(/.*)?                  system_u:object_r:bin_t
2  /bin/tcsh            --     system_u:object_r:shell_exec_t
3  /bin/bash            --     system_u:object_r:shell_exec_t
4  /bin/bash2           --     system_u:object_r:shell_exec_t
5  /bin/sash            --     system_u:object_r:shell_exec_t
6  /bin/d?ash           --     system_u:object_r:shell_exec_t
7  /bin/zsh.*           --     system_u:object_r:shell_exec_t
8  /usr/sbin/sesh       --     system_u:object_r:shell_exec_t
9  /bin/ls              --     system_u:object_r:ls_exec_t
10 /boot(/.*)?                 system_u:object_r:boot_t
11 /boot/System\.map(-.*)?     system_u:object_r:system_map_t
12 /dev(/.*)?                  system_u:object_r:device_t
13 /dev/pts(/.*)?              <<none>>
14 /dev/cpu/.*          -c     system_u:object_r:cpu_device_t
15 /dev/microcode       -c     system_u:object_r:cpu_device_t
16 /dev/MAKEDEV         --     system_u:object_r:sbin_t
17 /dev/null            -c     system_u:object_r:null_device_t
18 /dev/full            -c     system_u:object_r:null_device_t
19 /dev/zero            -c     system_u:object_r:zero_device_t



This example specifies how the files in the /bin/, /boot/, and part of /dev/ directories should be
labeled. For example, line 3 is a simple entry that matches the filename /bin/bash and specifies that
it should be labeled with the security context system_u:object_r:shell_exec_t. The object class
specification is in this case, which means a regular file. The object class specifications are the same
as those understood by the command find(1).

When processes query the file contexts, files using the matchpathcon(3) library call to match the
name of a file-related object, the most specific entry is always used. For example, line 1 has a
regular expression that will match all files in the /bin/ directory. If there is no object class specifier,
as is the case in line 1, it will match all file-related objects. Lines 2 through 9, however, have regular
expressions that are more specific and will match some files in the /bin/ directory. When the match
for /bin/bash is requested, line 3 will match because it is an exact match. The file /bin/dd, however,
has no more specific match than line 1.

Line 13 uses the special <<none>> syntax to specify that file-related objects that match this entry
should not be labeled. This is used for files that must be labeled at runtime. Entries with <<none>> are
used to prevent other, more general regular expressions from matching and causing the file-related
objects to be labeled.

Many different utilities and applications use file contexts files, often during policy development and
system administration. Chapter 13 describes these tools and their intended use.

10.2.2. Task-Based Filesystems (fs_use_task)

With task-based labeling, new file-related objects inherit their security context from the creating
process. Filesystems that use task-based labeling do not support program-requested labeling. This
type of labeling behavior is useful for simple pseudo filesystems that are not truly intended to store
user data but rather are designed to support certain kinds of kernel resources such as unnamed
pipes. For example, consider the following fs_use_task statement:

fs_use_task pipefs system_u:object_r:fs_t;

This statement specifies that the pipefs filesystem uses task-based labeling and that the security
context for the filesystem object for pipfs is system_u:object_r:fs_t.

The pipefs filesystem is a good example of a filesystem that uses task-based labeling. This filesystem
is a pseudo filesystem used to implement unnamed pipes. Unnamed pipes, created with the pipe(2)
system call, are by their very nature not associated with a file in a user-space visible filesystem.
Despite this, communications over pipes is done using standard read and write system calls on file
descriptors. The Linux implementation, therefore, uses a special-purpose filesystem called pipefs
that is not visible to userspace. The filesystem is mounted and used by the kernel internally and
labeled using task labeling.

10.2.3. Transition-Based Filesystems (fs_use_trans)

Transition-based filesystem labeling is similar to task-based labeling. Both are normally used for
simple pseudo filesystems. However, instead of using the security context from the creating process,
transition-based labeling sets the security context of file-related objects based on type transition



(type_transition) rules.

Type transition rules for transition-based labeling are subtly different from those for the more
common extended attribute mechanism. On extended attribute labeled filesystems, labeling decisions
use the security context of the creating process and the containing directory. For transition-based
labeled filesystems, the type_transition rules use the security context of the creating process and
the security context of the associated filesystem object instance for the filesystem. No provision
exists for basing the security context of a new object on the context of the containing directory; the
security context is always based on the type of the associated filesystem object. If there is not a
relevant type_transition rule, the security context defaults to that of the filesystem object.

Consider the following filesystem use statement:

fs_use_trans devpts system_u:object_r:devpts_t;

This statement specifies that the devpts filesystem uses transition-based labeling. The security
context for the devpts filesystem object is specified as system_u:object_r:devpts_t.

As mentioned previously, transition-based labeled filesystems use type_transition rules to derive the
type for file-related objects. For example, consider the following type transition rule:

type_transition sysadm_t devpts_t : chr_file sysadm_devpts_t;

This rule states that when processes with the type sysadm_t create objects of chr_file class in
filesystems labeled devpts_t, the resulting object should be labeled sysadm_devpts_t. The implied
object class for the target of this type transition is filesystem rather than dir because this type
transition will apply to the creation of objects in a transition-based filesystem regardless of the
directory type. If there is no appropriate type_transition rule, any objects created on this filesystem
will have the filesystem security context.

10.2.4. Generalized Security Context Labeling (genfscon)

The generalized security context statement (genfscon) is used for runtime labeling of pseudo
filesystems, such as proc or sysfs, and legacy filesystems that do not support extended attributes.
Unlike the other filesystem labeling mechanisms discussed so far, which require modification of the
kernel filesystem code, genfscon labeling, at least in a limited form, can be used with unmodified
filesystems.

The genfscon statement specifies both the labeling mechanism for the filesystem and the labeling for
the file-related objects stored in the filesystem. There are two forms of genfscon statements: a full
form that specifies fine-grained labeling for file-related objects and a limited form useful for legacy
filesystems.

10.2.4.1. Fine-Grained Labeling with genfscon Statement

Consider the following example of the full-feature genfscon statements for the proc filesystem:



1  genfscon proc /                  system_u:object_r:proc_t
2  genfscon proc /kmsg              system_u:object_r:proc_kmsg_t
3  genfscon proc /kcore             system_u:object_r:proc_kcore_t
4  genfscon proc /mdstat            system_u:object_r:proc_mdstat_t
5  genfscon proc /mtrr              system_u:object_r:mtrr_device_t
6  genfscon proc /net               system_u:object_r:proc_net_t
7  genfscon proc /sysvipc           system_u:object_r:proc_t
8  genfscon proc /sys               system_u:object_r:sysctl_t
9  genfscon proc /sys/kernel        system_u:object_r:sysctl_kernel_t
10 genfscon proc /sys/net           system_u:object_r:sysctl_net_t
11 genfscon proc /sys/vm            system_u:object_r:sysctl_vm_t
12 genfscon proc /sys/dev           system_u:object_r:sysctl_dev_t
13 genfscon proc /net/rpc           system_u:object_r:sysctl_rpc_t
14 genfscon proc /irq               system_u:object_r:sysctl_irq_t

As these example statements show, the genfscon statement syntax requires the name of the
filesystem, a full or partial path name (relative to the root of the filesystem), and a security context.
The full syntax for the genfscon statement can be found on page 220.

These example genfscon statements show that there can be multiple genfscon statements for the
same filesystem. For filesystems that support this full form of the genfscon statement, the multiple
statements are used to specify fine-grained labels for file-related objects. When multiple genfscon
statements are present, the security context for file-related objects is determined by matching the
genfscon statement with the most specific partial path name and using the security context from that
statement.

For example, assume that the proc filesystem is mounted at /proc (the standard location). Using
these example genfscon statements, the file /proc/filesystems would match the statement on line 1
and receive the security context system_u:object_r:proc_t. Similarly, the directory
/proc/sys/kernel/ would match the genfscon statement on line 9 (with the partial path /sys/kernel)
and be labeled system_u:object_r:sysctl_kernel_t.

All filesystems that use genfscon labeling include at least one genfscon statement with / as the partial
path. The security context in this genfscon statement is used to label the filesystem object associated
with the filesystem in addition to being the default security context for all file-related objects stored in
the filesystem. In the preceding example, the filesystem object for proc would receive the security
context system_u:object_r:proc_t.



Labeling PID Files in Proc

The proc filesystem contains files and directories representing every active process on
the system. These files and directories, which are contained in a directory named with
the process ID (PID) of the process, can be used to get or set properties of the process
preferably through libselinux calls (for example, getcon(3), setcon(3)). The PID
directory and all the files and directories that it contains receive the same security
context as the process that they represent.

For this reason, it is not uncommon to see rules such as the following:

allow apache_t self : dir { read getattr search };
allow apache_t self : file { read getattr write };

Rules such as these allow a domain, apache_t in this example, access to the files and
directories representing it.

10.2.4.2. Legacy Filesystem Labeling with the genfscon Statement

As mentioned previously, genfscon can be used in two ways. Before examining the more limited form
of this statement intended for legacy filesystems, let's examine some properties of the proc
filesystem that make it work well with the full genfscon statement. This will help you understand why
other filesystems cannot use the features. These properties concern how file-related object naming is
handled on a Linux system.

First, the names of all the files and directories that can appear in the proc filesystem are well known
and consistent across systems, with the exception of the files and directories representing active
processes. For example, /proc/sys/kernel/hostname is always a file that is used to get or set the host
name. Although the location of important files is often known for other filesystems (for example,
/etc/shadow), the location is seldom known relative to the filesystem mount point and, more
important, it is seldom the case that the security properties of all of the file-related objects can be
determined by the path.

Second, file-related objects are uniquely identified by path name in the proc filesystem, and the
kernel can easily determine this absolute path in all circumstances. The proc filesystem does not
support the concept of hard links. This means, for example, the object identified by the path
/proc/sys/kernel/hostname is never identified by any other path.

Together these properties make the proc filesystem suitable for labeling based on path name, as is
done by genfscon labeling. Very few filesystems exhibit these properties, making labeling by path
name not only difficult but potentially dangerous, as discussed previously.

We use the limited form of genfscon for labeling many legacy filesystems, including many that do not
exhibit the same properties as proc. To handle filesystems that cannot be safely labeled by path
name, we set a default label using the genfscon statement for the filesystem and all the file-related
objects in that filesystem. We do this with a single genfscon statement for the entire filesystem. For



example, consider the following genfscon statements:

genfscon vfat /               system_u:object_r:dosfs_t
genfscon msdos /              system_u:object_r:dosfs_t
genfscon fat /                system_u:object_r:dosfs_t
genfscon ntfs /               system_u:object_r:dosfs_t

These genfscon statements for the vfat, msdos, fat, and ntfs filesystems set the security context for
the associated filesystem objects and all the file-related objects stored in the filesystems to
system_u:object_r:dosfs_t.

Generalized Security Context Statement (genfscon)

The generalized security context statement (genfscon) specifies the labeling mechanism
to be used for a filesystem and the labeling for file-related objects stored in the
filesystem. There can be multiple genfscon statements for each filesystem. The full
syntax of the statement is as follows:

genfscon fs_name partial_path context;

fs_name The name of the filesystem that will use genfscon labeling
(for example, proc). The filesystem names are the same as
those understood by the kernel and mount(8) command and
are listed in /proc/filesystems.

partial_path A partial path relative to the mount point of the filesystem.
(For example, for a filesystem mounted at /proc, the partial
path / TRanslates to /proc at runtime.) If multiple genfscon
statements are specified for a filesystem, file-related objects
are labeled using the security context from the statement
that includes the partial path that most closely matches the
path to the file-related object.

context A security context used to label file-related objects that most
closely match this genfscon statement. For genfscon
statements with the partial path of /, this security context is
also used to label the filesystem object associated with the
filesystem.

The genfscon statement is valid only in monolithic policies and base loadable modules.
They are not valid in conditional statements and non-base loadable modules.





10.3. Network and Socket Object Labeling

Network and socket objects are labeled using policy statements and initial SIDs; there is no
mechanism for program-requested labeling. We use several policy labeling statements to label
network and socket objects. Table 10-2 lists all the network and socket-specific labeling statements
and the relevant object classes.

Table 10-2. Network and Socket-Related Object Labeling Mechanisms

SELinux Policy
Statement

Linux Resources and SELinux Object Classes

netifcon Network interfaces: netif

nodecon IP addresses representing network hosts: node

portcon Network sockets: tcp_socket (name_bind, recv_msg, and send_msg only),
udp_socket (name_bind, recv_msg, and send_msg only), and rawip_socket
(recv_msg and send_msg only)

10.3.1. Network Interface Labeling (netifcon)

Network interfaces are labeled with the network interface security context statement (netifcon) or
with the netif initial SID. For example, consider the following statement:

netifcon eth0 system_u:object_r:netif_t
 system_u:object_r:packet_t

This statement provides the security context for the network device eth0 as
system_u:object_r:netif_t (that is, the first security context) and the default label for packets
received on this interface as system_u:object_r:packet_t (that is, the second security context). The
default packet label is not currently used and is awaiting support for per-packet labeling. The full
syntax for the netifcon statement is shown in the sidebar on page 146. The network interface name,
eth0 in this example, is the same interface as understood by the ifconfig(8) command.

Note

Per-packet labeling, which allows finer-grained control over networking, was part of the
initial implementation of SELinux but was not included when SELinux was merged into the



Linux kernel as an LSM module. There was concern over the invasiveness and performance
impact of many of the fine-grained network controls, particularly those that would result in
additional access checks on the processing of every packet. As a result, some SELinux
network controls, such as per-packet labeling, were not included. Work is ongoing to re-
create these features in a way acceptable to the Linux kernel community leveraging other
technologies such as Netfilter and IPsec.

Any network interface that is not labeled with a netifcon statement is labeled with the netif initial
SID security context.

Network Interface Security Context (netifcon) Statement

The network interface security context statement is used to label netif object instances.
The full syntax for the statement is as follows:

netifcon interface if_context packet_context

interface The name of the network interface to label (for example,
eth0). The interface names are the same as those
understood by the ifconfig(8) command.

if_context The security context for the netif object instance associated
with the specified network interface.

packet_context The default security context for packets received on the
specified network interface. This is currently unused.

The netifcon statement is valid only in monolithic policies and base loadable modules.
They are not valid in conditional statements and non-base loadable modules.

10.3.2. Network Node Labeling (nodecon)

Node objects are labeled with the node security context statement (nodecon) or the node initial SID.
The nodecon statement labels node objects by subnet and network mask. Recall from Chapter 4 that
the node object class represents network nodes by IP address. For example, consider the following
statement:

nodecon 127.0.0.1 255.255.255.255 system_u:object_r:node_lo_t

This statement indicates that all nodes with the IPv4 address 127.0.0.1 and the subnet mask
255.255.255.255 (that is, exactly one host, 127.0.0.1 or localhost) are labeled with the security



context system_u:object_r:node_lo_t. The full syntax for the nodecon statement can be seen in the
sidebar on page 148.

The nodecon statement supports IPv4 addresses, like the example above, and IPv6 addresses. For
example, consider the following statement:

nodecon ::1 ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff system_u:object_r:node_lo_t

This nodecon statement is the IPv6 equivalent of the previous IPv4 example for specifying localhost.

The nodecon statement supports inexact matches in addition to exact matches. For example, the
following statement matches an entire subnet:

nodecon 192.168.0.0 255.255.255.0 system_u:object_r:node_intranet_t

The example statement above would match all hosts on the 192.168.0.0 subnet for a Class C
network.

Node security context statements are automatically ordered by the policy compiler so that more
specific statements are matched first, similarly to how genfscon statements work. This convention
allows the policy to contain nodecon statements with overlapping IP address ranges and resolve the
conflicts naturally. For example, consider a policy with the following statements:

nodecon 192.168.0.0 255.255.0.0 system_u:object_r:node_intranet_t
nodecon 192.168.1.0 255.255.255.0 system_u:object_r:node_webserver_t

In this example, the nodecon statement with the partial IP address 192.168.0.0 is more general than
a statement with the partial IP address 192.168.1.0. The automatic node security context statement
ordering ensures that all addresses in the 192.168.1.0 subnet (for example, 192.168.1.100) will
match the second statement and receive the type webserver_t while all other addresses in the
192.168.0.0 subnet (for example, 192.168.2.1) will match the first statement.

The currently available policies do not make extensive use of node labeling, generally labeling only
localhost and all other nodes. For example, these statements are representative of the IPv4 nodecon
statements for most general-purpose policies:

nodecon 127.0.0.1      255.255.255.255 system_u:object_r:node_lo_t
nodecon 0.0.0.0 255.255.255.255 system_u:object_r:node_inaddr_any_t

This strategy is used to remove the need for customizing the policy based on local network settings.
Many custom-built policies for specific applications tend to reengineer the network policy to afford
better control of the network.

All nodes without a matching nodecon statement are labeled with the node initial SID security context.



Node Security Context Statement (nodecon)

The node security context (nodecon) statement labels node object instances. The full
syntax for the statement is as follows:

nodecon subnet netmask context

subnet An IP address or subnet (for example, 127.0.0.1 or
192.168.0.0). This can be an IPV4 or IPv6 address.

netmask The network mask for the subnet. The network mask must
match the protocol version of the subnet.

context The security context for the node object instance that
represents the specified subnet and netmask.

The nodecon statement is valid only in monolithic policies and base loadable modules.
They are not valid in conditional statements and non-base loadable modules.

10.3.3. Network Port Labeling (portcon)

Socket objects representing ports are labeled with the port security context statement (portcon) or
the port initial SID. The portcon statement labels ports based on protocol and port number or range.
For example, consider the following statement:

portcon tcp 80  system_u:object_r:http_port_t

This statement shows that the portcon statement syntax requires the protocol (tcp or upd), the port
number or range, and a security context. Notice that the statement does not end in a semicolon. The
full syntax for the port security context statement is in the sidebar on page 150. The above
statement labels the TCP port 80 with the security context system_u:object_r:http_port_t.

It is common for portcon statements to overlap when using port ranges. For example, consider the
following statements:

portcon tcp 80          system_u:object_r:http_port_t
portcon tcp 1-1023      system_u:object_:reserved_port_t

Both of these portcon statements match TCP port 80. In the case of overlap, the first matching
statement is used. In this example, TCP socket objects associated with network port 80 would receive
the security context system_u:object_r:http_port_t, whereas any other port between 1 and 1023
would receive the security context system_u:object_:reserved_port_t. This method of resolution
makes policy maintenance simpler by allowing the insertion of a broad labeling statement that can be



overridden over time by inserting more specific statements. When a new, specific statement is
inserted the original initial statement does not need to be changed.

Unlike the nodecon statements, which are ordered by specificity, the portcon statements are matched
in the order specified in the policy. This means that it is possible to order portcon statements in a
way that a statement would never be matched. In this case, the policy compiler issues a warning.

Network ports that do not match any portcon statements are labeled with the port initial SID.

What may not be clear from our discussion of the portcon statement so far is what objects are
actually being labeled. You might have noticed from Chapter 4 that there is no object class
specifically for ports. Permissions relating to ports are access checks against socket objects labeled
with the port type. The socket object instance used to check port permissions is distinct from the
socket object instance used for communication by the process, which is labeled with the type of the
creating process.

For example, assume that TCP port 80, which is normally used for HTTP traffic, is labeled
http_port_t. Allowing a process of type httpd_t to receive TCP data on this port would require
permission on a TCP socket labeled with the process type and permission on a TCP socket with the
type http_port_t. To illustrate, the rules to allow only the receipt of the TCP data (via the recv_msg
permission on the tcp_socket object class), would look like the following:

allow httpd_t self : tcp_socket recv_msg;
allow httpd_t http_port_t : tcp_socket recv_msg;

These rules clearly show the two tcp_socket object instances. Table 10-2 shows which permissions
on which socket object classes are checked on objects labeled with the port type.

Port Security Context Statement (portcon) Syntax

The port security context statement (portcon) labels network ports based on protocol
and port number or range. The full syntax for the statement is as follows:

portcon protocol port_num context

protocol The network protocol (tcp or udp).

port_num A port number or range (for example, 80 or 11023). If
multiple statements overlap, the first matching statement is
used to label the port.

context The security context for the socket object instances
associated with the port.

The portcon statement is valid only in monolithic policies and base loadable modules.
They are not valid in conditional statements and nonbase loadable modules.



10.3.4. Socket Labeling

Sockets created by processes using the socket(2) system call inherit their security context from the
creating process. Sockets used to check the permissions associated with ports are discussed above
with the portcon statement.

For example, a process with the security context system_u:system_r:httpd_t would create sockets
with the same security context. This means that to allow this domain type to send and receive using
a TCP socket, an allow rule similar to the following would be required:

allow httpd_t self : tcp_socket { read write send_msg recv_msg };

This example illustrates how the TCP socket object is labeled; additional permissions are required for
realistic usage of sockets. The labeling of all socket objects created by userspace processes, including
local sockets such as Netlink and UNIX domain sockets, are labeled in this way. Sockets created by
the kernel are labeled with the security context of the kernel initial SID.



10.4. System V IPC

The System V interprocess communication (IPC) objects are, with the exception of the msg objects,
labeled with the security context of the creating process. For example, if a process with the security
context user_u:object_r:user_xserver_t creates a shared memory segment, the associated shm
object would have the same security context, user_u:object_r:user_xserver_t. This labeling
behavior is the same for the shm, sem, and msgq object classes.

The msg objects are labeled using type_transition rules (see Chapter 5). The rule uses the type of
the sending process and the type of the message queue. For example, the type of the messages sent
on that message queue could be specified with a type_transition rule, as follows:

type_transition user_t user_xserver_t : msg user_msg_t;

This type_transition rule states that when processes with the type user_t send messages on a
message queue of type user_xserver_t, the message type should be user_msg_t. Unlike other
type_transition rules previously discussed, no provision exists for a process to explicitly request the
type of the message and override the rule. If there is no matching type_transition rule, the
message receives the same type as the sending process.

Regardless of whether the message receives the type through inheritance or a type_transition rule,
the process must have permission to send messages of that type. For example, the following allow
rule would be required for the example type_transition rule above:

allow user_t user_msg_t : msg send;

This allow rule states that processes of type user_t are allowed to send messages of type
user_msg_t. Notice that there is no access needed to label the message, only the ability to send the
message. There is no provision for creating messages without sending. These conditions are all based
on the implementation of System V messages and message queues.



10.5. Miscellaneous Object Labeling

The labeling mechanisms for the remaining object classes (capability, process, security, and
system) are listed in Table 10-3.

Table 10-3. Miscellaneous Object Classes Associated Labeling
Mechanisms

Object Class Labeling Mechanism(s)

capability Inherited from the associated process object

process Inherited from parent process, or set by domain transition, or dynamic context
transition

security SECURITY initial SID

system SYSTEM initial SID

10.5.1. Capability Object Labeling

The capability object class is closely related to the process object class. Not surprisingly, capability
objects have the same security context as the process with which they are associated. For example,
consider the following rule:

allow user_t self : capability dac_override;

This allow rule states that processes of type user_t are allowed to retain the dac_override capability.
The type of the capability object is, by virtue of the self keyword, the same as the process. There
is no policy statement or mechanism for setting or changing the security context of capability objects.

10.5.2. Process Object Labeling

The labeling of process objects is central to SELinux, because it is the mechanism for associating the
correct access with an application. Chapter 2 contains a lengthy description of the mechanics and
concepts of domain transitions, which are the most important aspect of process labeling. Here we
discuss the other aspects of process labeling.

In Linux, process objects are not created when applications are executed with the execve(2) system
call. Instead, new processes are created by copying another process using fork(2) or clone(2). New



process objects, therefore, inherit the security context of the creating process to reflect that they
have the same security properties. There is no provision for overriding this labeling decision; both
domain transitions and dynamic security context transitions, which are the only means to change the
security context of a process, can change only the security context of an existing process.

A domain transition is a change of the process security context on an execve(2) system call. The
security context change can happen automatically as the result of a type_transition rule or program
request through the use of the setexeccon(3) library call. As always, a change of the security context
for a process must be explicitly allowed by the policy.

We normally focus on changing the process type during domain transition via the execve(2) system
call, but it is also possible to change the user or the role. Role changes can be automatic, through
role transition statements, and both user and role changes can be program requested explicitly
through setexeccon(3). Changing the user or role of a process is controlled by constraints and role
allow rules, which are covered in Chapters 6 and 7.

A dynamic security context transition is program requested labeling that changes the security context
of an existing process. The change, which is accomplished with the setcon(3) library call, must be
allowed by the policy through the dyntransition permission. Chapter 5 has more information on
dynamic security context transition, including a discussion of its dangers and our advice not to use it.

10.5.3. System and Security Object Labeling

The system and security object classes are unique in that there is only ever one instance for each.
The kernel and security initial SIDs are used to label the system and security object instances,
respectively. There is no mechanism for changing the security context of these objects.



10.6. Initial Security Identifiers

A special kind of default labeling behavior is provided by initial SIDs. Initial SIDs are used in two
circumstances: early in system initialization before the policy is loaded, and when an object would
otherwise have an invalid or missing security context (that is, as a failsafe label).

Chapter 7 introduced SIDs, which are opaque references to security contexts used internally by
SELinux. Initial SIDs are a set of reserved SIDs used during system initialization or for predefined
objects. Unlike most SIDs, which are created on demand at runtime when a security context is used
for the first time, initial SIDs are always present in the system. (That is, they are hard-coded in the
SELinux LSM module.) Table 10-4 lists the initial SIDs used in a FC4 system.

Table 10-4. Example Initial SIDs in FC4

Initial SID Description

kernel Applied to all objects created by the kernel (for example, threads and sockets
created by the kernel), the system object instance, and is used as a default for
kernel resources.

security Applied to the security object instance.

unlabeled Applied to all objects with an invalid security context.

file Default security context for file-related objects that do not otherwise have a security
context. This is for file-related objects without security contexts; file-related objects
with invalid security contexts receive the unlabeled SID.

port Default security context for socket objects associated with ports that do not have a
matching port security context statement.

netif Default security context for netif objects associated with network interfaces that do
not have a matching network interface security context statement.

node Default security context for node objects associated with nodes that do not have a
matching node security context statement.

sysctl Default security context for proc filesystem system objects. These objects are
normally labeled via generalized filesystem security context statements rather than
via this initial SID.

Some objects are labeled via an initial SID early in system initialization, even before the policy is
loaded. This labeling behavior is needed, for example, to label objects such as the kernel security
server and the root filesystem, which are present in the system before the first policy load. When the
policy is eventually loaded, the initial SIDs are then associated with the appropriate security context.



Initial SIDs are also used to prevent objects from having a missing or invalid security context, which
would make it impossible for SELinux to correctly enforce access. Instead, SELinux associates these
objects with the special unlabeled initial SID. The unlabeled initial SID should have a security context
that allows only limited access, thereby preventing inappropriate access until the objects can be
relabeled by the administrator or destroyed.

Invalid security contexts most commonly result from loading a new policy that removes users, roles,
or types, or changes role or type authorizations. In this situation, the SIDs representing security
contexts that use these invalid names or associations will become invalid and are mapped to the
unlabeled SID at policy load. Invalid security contexts can also arise when transferring object
instances between systems (for example, using removable media). Further, if the objects are created
on a non-SELinux system, they will have no associated security context. Regardless of whether the
security context is invalid or missing, SELinux will use the unlabeled initial SID on first access to the
object as the security context.

Like object classes, initial SIDs are defined by the kernel and other object managers in addition to
being declared in the policy. The initial SID declaration statement declares an initial SID for use in the
policy. We will not normally change initial SID statements as a part of policy writing. To illustrate the
syntax, consider the following statement:

sid kernel

This statement declares the initial SID kernel. This statement does nothing more than reserve the
name. Initial SID names are in their own namespace and can overlap with type, object class, or other
policy component names. The full syntax for the initial SID statement is in the sidebar on page 232.

Initial SID Declaration Statement Syntax (sid)

The initial SID statement (sid) reserves a name for an initial SID. Initial SIDs are defined
by the kernel and other object managers; this statement makes them available to the
policy. The full syntax is as follows:

sid sid_name

sid_name The name of the initial SID. The name may contain
letters or numbers.

The initial SID declaration statement is valid only in monolithic policies and base loadable
modules. They are not valid in conditional statements and nonbase loadable modules.

The initial SID security context statement associates a security context with a previously declared
initial SID. For example, consider the following statement:

sid kernel    system_u:system_r:kernel_t



The statement above states that the security context for the initial SID kernel is
system_u:system_r:kernel_t. As you can see, both statements have the same keyword name (sid),
so be careful with the differing syntax. The effect of the initial SID security context statement is to
associate the security context system_u:system_r:kernel_t with the initial SID kernel, which must be
previously declared with the initial SID declaration statement. The full syntax for the initial SID
security context statement is in the sidebar on page 233.

Initial SID Security Context Statement Syntax (sid)

The initial SID security context statement (sid) associates a security context with a
previously declared initial SID. The full syntax is as follows:

sid sid_name context;

sid_name The name of a previously declared initial
SID.

context The security context to associate with this
initial SID.

The initial SID security context statement is valid only in monolithic policies and base
loadable modules. They are not valid in conditional statements and nonbase loadable
modules.



10.7. Exploring Object Labeling with Apol

Apol currently has two primary features for understanding object labeling: rule searching and file
security context indexing and searching. We have explored rule searching in Chapters 5 and 6. Figure
10-1 shows the File Contexts tab of apol, which is used to create and search indexes of the security
contexts for file-related objects. This allows us to examine how the file-related objects on a system
are actually labeled as opposed to examining the file contexts specifications, which show how the file-
related objects should be labeled. When trying to understand how a policy will be enforced on a
particular system, information about how file-related objects are actually labeled is essential.

Figure 10-1. File context indexing and searching

[View full size image]

A file contexts index is a snapshot of the security contexts of all of the file-related objects on a
system. This index can be created from apol, using the Create and Load button, or with the indexcon
command (included in the Setools package). Both tools recursively walk all mounted filesystems,
recording the name, object class, and security context of all file-related objects. After the index is
created (the data is stored in a file), it can be searched using apol or the searchcon command (also
in Setools). The index is stored so that it can be searched efficiently, unlike searching the actual
filesystem. For example, Figure 10-1 shows the result of searching for all file-related objects with the



type user_home_t. Searching the file context index to find all files with this type was fast, whereas
searching the filesystem would have taken several minutes. In addition, searching the file context
index can be done on a different system than the one on which it was created.

Searches can be performed on any combination of name, user, object class, or type. Searching based
on role is not supported because all file-related objects will normally have the special object_r role.



10.8. Summary

An object is labeled in one of four ways: policy statements (for example, type transition rules),
hard-coded object manager defaults, program-requested labeling, and initial SIDs.

The policy must always contain the appropriate access in addition to any relevant labeling
statements for an object to be successfully labeled.

Labeling decisions often use information from the execution environment (for example, security
context for the process and related object instances).

File-related labeling behavior is specified per-filesystem using the filesystem use statements or
the generalized security context statement.

Extended attribute labeling is used for most native Linux filesystems and supports program-
requested labeling and persistent storage of security contexts.

Labels on extended attribute labeled filesystems are managed using file context files and utilities
that read those files.

Task-based and transition-based labeling are used primarily for pseudo filesystems.

Generalized security context labeling is used primarily for labeling proc and legacy filesystems.

Network interfaces are labeled by interface name (for example, eth0) using the netifcon
statement.

Network nodes are labeled by IP address and netmask using the nodecon statement.

Ports are labeled by number using the portcon statement.

Successfully sending or receiving network data often requires permissions on several socket
objects in addition to permission on the relevant node and netif objects.

System V IPC objects, with the exception of msg objects, receive the security context of the
creating process. Msg objects are labeled based on type_transition rules or the security context
of the creating process.

Processes receive the same security context as their parent. This security context can be
changed through a domain or dynamic context transition.

The capability object has the same security context as the associated process.

The security and system objects receive the security context of the kernel and security initial
SIDs, respectively.

Initial SIDs are used to label some objects and are a failsafe default to prevent objects from
having a missing or invalid security context.





Exercises

1. Given a file context file with the following entries, what security context would the files
/etc/passwd, /etc/shadow, and /etc/mtab receive?

/etc(/.*)?                   system_u:object_r:etc_t
/var/db/.*\.db         --    system_u:object_r:etc_t
/etc/\.pwd\.lock --    system_u:object_r:shadow_t
/etc/passwd\.lock --   system_u:object_r:shadow_t
/etc/group\.lock --    system_u:object_r:shadow_t
/etc/shadow.*    --    system_u:object_r:shadow_t
/etc/gshadow.*   --    system_u:object_r:shadow_t
/var/db/shadow.* --    system_u:object_r:shadow_t
/etc/blkid\.tab.* --   system_u:object_r:etc_runtime_t
/etc/fstab\.REVOKE  --       system_u:object_r:etc_runtime_t
/etc/\.fstab\.hal\..+ --     system_u:object_r:etc_runtime_t
/etc/HOSTNAME        --      system_u:object_r:etc_runtime_t
/etc/ioctl\.save --    system_u:object_r:etc_runtime_t
/etc/mtab        --    system_u:object_r:etc_runtime_t
/etc/motd        --    system_u:object_r:etc_runtime_t

2. What is unique about file-related object labeling on filesystems that use extended
attribute labeling?

3. Write a portcon statement that would label port 22 with the security context
system_u:object_r:sshd_t for TCP. What is the object class that is labeled by this
statement?

4. Write a nodecon statement that would label the system 192.168.1.128 with the security
context system_u:object_r:webserver_t. What object class is labeled by this statement?
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The job of taking all the elements of an SELinux policy and composing a complete and comprehensive
security policy that meets all your security goals can be difficult if you work with just the raw policy
language described in Part II. In this chapter, we discuss one of the two principal methods (derived
from the original National Security Agency [NSA] example policy) that have evolved the past several
years to allow policy developers to manage the policy build process.



11.1. Methods for Managing the Build Process

If you have read through Part II, by now you might have concerns about the practicality of building a
complete, comprehensive, and secure SELinux policy. Certainly an SELinux policy is rich and
complex; necessarily so because SELinux provides fine-grained access control for the rich and
complex Linux kernel and its interactions with the multitude of userspace applications.[1] Fear not. In
this chapter, we discuss ways to manage the entire policy build process, and methods that the
SELinux community has evolved to aide in this process.

[1] When you hear criticism that SELinux is complex, you should view this comment with skepticism. Those who make this remark

are usually implying that Linux is fine, but SELinux adds too much complexity. The reality is that SELinux simply exposes the

complexity that is inherent to Linux. It does not add any. If you truly want to have comprehensive, strong security for Linux, there

is no better option than SELinux. If you are content with partial solutions that provide incomplete (but simple) security solutions for

this complex operating system, perhaps SELinux may not be to your taste. In any case, as we discuss later in this book, tools and

methods are being developed to manage the complexities of Linux that SELinux exposes, so that you can have comprehensive

security with increasing ease of use.

The methods for building policies are changing and evolving at a rapid pace. In this chapter, we
overview one prevalent means of building policies using the basic policy language tools and
compilers. This kind of low-level policy development is currently the predominant method for creating
and modifying SELinux policies. Higher-level development methods are being developed, but none
are in practice yet.

The method for building policies we discuss in this chapter, the example policy, is based on the
original example policy released by NSA with the original SELinux. We discuss another method called
the reference policy in Chapter 12, "Reference Policy." Both of these methods have common low-level
characteristics (for example, a tree of source modules), an organization and build process, and
macros used to provide basic abstractions over the core language.

The example policy has been evolved through years of community development far beyond what was
originally released by NSA. One of the principal enhancements has the ability to build both strict and
targeted policies with two different variations of the policy source tree. Both of these example policy
variations share common characteristics and are related to each other. The strict policy is based on
an example policy that is most directly descended from the original NSA example policy. As its name
implies, the strict policy attempts to provide a domain type for every program that reasonably
requires a private domain. The strict policy has evolved through years of open source community
development and reflects the most extensive collective knowledge of policy statements.

A challenge with the strict policy is that by trying to be strict, it inevitably causes breakage with
existing Linux applications, which expect looser security controls. For many users, these annoying
application breakages are an unacceptable tradeoff for increased security. To address this concern,
the concept of a targeted policy was created. A version of a targeted policy is the default policy
released with Red Hat Enterprise Linux version 4 (RHEL4) and Fedora Core (FC) systems. The
purpose of the targeted policy is to allow most programs to run as if they were not running on an
SELinux system. These programs are called unconfined, and the concept is achieved by creating an
unconfined domain that essentially has access to all types in the SELinux policy.

In the targeted policy, the more confining rules are focused on a small set of critical, likely-to-be-



attacked programs such as network-facing daemons. These programs run in restricted domains as in
the strict policy. In this way, the targeted policy has less chance of causing problems with legacy
applications by having fewer programs that have tighter security. With targeted policy, we do a have
less strict security enhancements; for many system solutions, however, the targeted policy is
adequate and a great improvement over current security practice. The targeted policy is also a nice
way to start using the features of SELinux without having to immediately use them everywhere.

In the remainder of this chapter, we provide an overview of the key features and capabilities of the
strict and targeted example policy source trees.

Warning

The one area where change is rapid is policies. All the policy build methods we discuss
(strict and targeted example policies in this chapter and the reference policy equivalents in
Chapter 12) are constantly under development and change. Be aware that the specific
conventions and organization of a policy source tree may have changed since the time of
this book's writing.



11.2. Strict Example Policy

The strict example policy is the longest-lived version of the example policy. It is largely maintained
and updated via the NSA and FC mail lists, but with contributions from other distributions, too. Both
NSA and Red Hat maintain versions of the strict example policy, which are essentially the same
source tree. You can obtain a version of this policy both from the NSA SELinux project page
(http://selinux.sourceforge.net) or from Red Hat for FC. If your system has strict example policy
sources installed (see Appendix A, "Obtaining SELinux Sample Policies"), you should be able to see
the sources in /etc/selinux/strict/src/policy/. The examples from earlier in this book are from a
version of the strict example policy. Our overview is based on the FC4 version of the strict example
policy; we encourage you to download the latest versions and use that as a baseline if you choose to
use this policy version.

The strict example policy builds a complete policy source file (policy.conf) using the source module
method described in Chapter 3, "Architecture." Recall that source modules use a combination of
scripts and macros to create higher-level constructs and produces a single, monolithic policy file (see
Figure 11-1). Source modules make extensive use of macros using m4, which is a flexible and
powerful macro tool.

Figure 11-1. Build and load process for SELinux policy using the example
policy

[View full size image]

http://selinux.sourceforge.net


The strict policy Makefile supports a number of build targets. The command make policy compiles
the entire policy and builds a binary policy file (for example, ./policy.19). This target is useful for
building a policy for testing or for installation on another system. The command make policy.conf
constructs a complete policy source file (./policy.conf) but will not compile the policy source. This is
useful if we want to construct a complete policy source for analysis (for example, using apol). The
command make install builds the binary policy and installs it and all supporting policy management
files. In the case of strict policy, the default installation directory is in /etc/selinux/strict/. This
command installs the new policy but does not load it into the kernel. You would need to reboot the
machine or use the make load command.

Finally, the make relabel command applies the security contexts to all files in the system. In general,
we would relabel only the entire system during initial install and/or after we load an entirely new
policy.

Note

The primary method for relabeling an entire filesystem is no longer using make relabel
from the policy source tree. Instead, the current methods of relabeling the entire system
are to use either the fixfiles relabel command or the touch /.autorelabel command
and reboot the systems. These two methods can be done with only the file contexts
configuration installed and not the entire policy source.



11.2.1. Overview of Policy Source File Structure

For this chapter, we examine the strict example policy sources from FC4; depending on the version of
the system you are using, there may be some differences. All filenames are from the policy source
root directory (for example, /etc/selinux/strict/src/policy). You will find various levels of
comments within each file and the ./README file at the top-level for additional information. In this
section, we give you a guided tour of the key files and directories, along with insights to their
purposes and uses. Our goal is to give you a head start in understanding the file structure; only
experience will allow you to fully understand them.

11.2.1.1. Object Class and Permission Definitions

As discussed in Chapter 4, "Object Classes and Permissions," object classes and their associated
permission sets are defined in the policy language. For the example policy, the directory ./flask/
contains these definitions. The Flask definitions are essentially static for all policies and should not be
changed. Kernel source header files are automatically generated from these files, because the kernel
and the policy must both agree on the set of object classes and associated permissions. The principal
files in this directory are as follows:

./flask/security_classes Declarations of object classes. See Chapter 4.

./flask/access_vectors Declarations of common permissions, and association of common and
unique permissions with each object class. See Chapter 4 and Appendix
C, "Object Classes and Permissions."

./flask/initial_sids Declarations of initial SID identifiers, which are used to manage default
security context labeling. See ./initial_sid_contexts and Chapter 10,
"Object Labeling."

In addition, this directory also contains several shell scripts that are used to construct the kernel
header files.

Warning

In general, you would not edit any of the files in the ./flask/ directory. These files must
correspond with kernel header files. Unless you are positive you know what you are doing,
which would imply familiarity with the kernel SELinux Linux Security Module (LSM) source
code, leave this directory alone.

11.2.1.2. Domain Types and Policy Rules

The primary policy modules for an example policy are kept in the ./domains/ directory. There are two
files and two subdirectories in this directory:



./domains/admin.te

./domains/user.te

These two files (the .te is for type enforcement) define domain types of user login sessions. These
"user domains" are unlike most other domain types in that they are not associated with a specific
program, but rather are the default domain types for classes of users. The file admin.te defines the
domain type sysadm_t, which is the most powerful user domain type. Although sysadm_t has nowhere
near the level of privilege, this domain type is the SELinux analogue to root. The file user.te defines
less-privileged user domain types, user_t and staff_t. Both of these types have limited privileges
and are intended for "ordinary users." The primary difference between the two is that staff_t is able
to transition its role and domain type to the more privileged sysadm_t.

These files also define a number of Booleans that are used to provide runtime policy configuration
options.

./domains/program/

./domains/misc/

These two directories contain the policy source modules for the strict example policy. The program/
directory is where most of the modules are located, typically one file per domain type (or set of
related domain types). Each policy module is contained in a .te file. Each module has a separate file
contexts file that identifies how file-related objects should be labeled with security context for those
objects associated with the module's types. We discuss file contexts later in this chapter.

The misc/ directory contains a small number of modules that are not the typical domain types (for
example, the type for the kernel: kernel_t) and do not have related .fc (file context) files. There is
little difference between the two directories in terms of functionality; in general, you should add any
new module to the program/ directory.

The ./domains/ directory is organized to support a coarse level of policy customization. Both policy
module directories have an unused/ directory (for example, ./domains/program/unused for the
primary module directory). The .te module files in those unused directories will not be included in the
policy build, nor will the associated file contexts. Therefore, we can exclude unneeded policy
statements from the policy we build by moving unnecessary policy modules to the unused/ directory.
We examine a policy module later in this chapter.

Warning

Dependencies are not well managed in the example policy. Therefore, as you move policy
modules in and out of the unused directory, you might find other policy modules that
depend upon the newly used/unused module resulting in build errors.

11.2.1.3. Unaffiliated Resource Types



Besides the policy modules described previously, most of the rest of the type declarations for a strict
example policy are contained in the ./types/ directory. The files in this directory generally (but not
always) just define types and not rules to access the types. These types are primarily passive objects
of the kernel and key userspace services and are not active domain types. You may need to change
these files, especially if you want to change the policy associated with certain kernel resources (for
example, networking). The files in this directory are as follows:
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./types/device.te This file defines types for many device special files, including the
default device file type device_t. Many of the types applied to objects
in the /dev/ directory are defined in this file.

./types/devpts.te This file defines the types for the devpts filesystem and its root
directory (that is, the filesystem for pseudo terminal devices in
Linux).

./types/file.te This file defines general file-related types, including unlabeled_t,
which is used when the type of a file-related object is invalid for the
loaded policy and file_t, which is the type used for a file-related
object that has no associated context. (Both situations indicate a
problem with the policy and/or filesystem labeling.) This file declares
other standard filesystem types, such as the default types for the
/etc/ (etc_t) and /tmp/ (tmp_t) directories.

./types/network.te This file defines the types for all the network-related objects (node,
network interfaces, ports, and so on). Many of the reserved network
ports have their own type (ssh_port_t, dns_port_t, smtp_port_t, and
so on). However, in general, you will find the network policy
architecture for the strict example policy (and most other generic
policies) is designed to allow either most or all networking, or no
networking at all for a given domain type. You might need to rework
this file if you want to provide greater control of the network (for
example, have types for ranges of nodes and control access based on
IP ranges) or if you want a multi-interface network configuration (for
example, a router).

./types/nfs.te Network File System (NFS) is not well supported in SELinux yet. For
example, network contexts are not passed between SELinux kernels
for NFS-mounted filesystems. This file defines basic NFS support by
defining the nfs_t type, which is used for all NFS files. In general,
NFS does not currently provide proper support of types and type
enforcement (TE).

./types/procfs.te This file provides the types for the proc filesystem (/proc/) including
the default type proc_t and many special purpose proc_*_t types.

./types/security.te This file defines various types relating to SELinux and its policy files.
The type security_t is the type of the security object class. Several
other types are defined that are used to protect installed policy files,
and related configuration and source files.



11.2.1.4. Miscellaneous Top-level Files and Directories

At the top-level directory, a number of files capture some of the less-frequently changed and used
policy components. Here we list these files and the conventions expected for each file:

./assert.te This file is where all neverallow rules (that is, invariant assertions)
are located for the policy. See Chapter 5, "Type Enforcement," for
more on assertions.

./attrib.te This file is where almost all attributes are declared. Associating
attributes with types happens throughout the policy files, but the
convention is that all attributes are first declared in this file using the
attribute statement. All attributes should be declared in this file,
with appropriate comments explaining their purposes. Throughout
the rest of the policy files, these attributes are associated with types
and used in policy rules. See Chapter 5 for more about attributes.

./constraints This file is where all non-multilevel-security (MLS) constraints are
defined. See Chapter 7, "Constraints," on policy constraints.

./macros/ This directory contains a number of files that have the m4 macros
used throughout the policy modules. These macros provide a level of
abstraction for writing policies. Just about every policy module uses
and calls several of these macros.

./mls This file is where all MLS constraints are defined for a traditional MLS
policy and all declaration of MLS sensitivities, categories, and levels.
This file is included only if you decide to build the optional MLS
features into your policy. See Chapter 8, "Multilevel Security," for
more on the optional MLS features.

./mcs This file is an alternative MLS configuration that primarily uses just
the categories, and not the sensitivities. This file, like the standard
MLS configuration (./mls), is optionally built in to a policy. As with
the MLS configurations, see Chapter 8 for more information.

./rbac This file originally contained all role allow rules. Over time, these
rules have migrated throughout the other policy files. There are
usually few such rules in most policies to date. See Chapter 6, "Roles
and Users," on role declarations and rules.

./users This file contains all policy-wide user declarations for the policy.
These are generic user declarations that are always expected in the
policy. Typically, this file will declare the special users, system_u and
user_u, and root and possibly other system default users. See
Chapter 6 for more information on users in the policy.

./local.users This file is a recent enhancement to SELinux policy management that
enables system administrators to add local users to the policy
without having the policy source files available. This file will be
installed in /etc/selinux/strict/users/local.users. You can hand-
edit the installed version of this file, and every time the policy is
reloaded, the local user definitions will be added to the kernel policy.



These files are fairly simple and straightforward in their purpose. You will find that you will likely
change them little if you are just trying to use and adapt the policy for your application.

11.2.1.5. Security Context Labeling

One of the great challenges with using SELinux, besides writing a good TE policy, is ensuring that all
the various object instances (files, directories, ports, network interfaces, and so on) are labeled with
the correct type for the current policy. After you have a properly compiled TE policy, many of your
debugging problems will be related to improperly labeled objects. We discussed the mechanisms and
issues for object labeling in Chapter 10. Next we discuss how object labeling is managed in the strict
example policy source files.

Several files in the policy source root directory address some of the security context labeling for a
system, in particular those context labeling statements that are part of the policy language proper:

./initial_sid_contexts As discussed previously, initial SIDs are defined as part of the flask
definitions in the ./flask/initial_sids file. That file simply declares
the initial SIDs available in the policy (which generally you should not
change). The initial_sid_contexts file assigns a security context to
each initial SID. For example, the initial SID security is used to
assign a security context to the single instance of the security object
class (the type of which should be security_t). Most of the initial
SIDs define default cases in case there is no explicit labeling
statement. For example, the initial SID port assigns the default
context for port objects (for example, with the type port_t by
default) for those ports that do not have an explicit portcon
statement in the policy. See Chapter 10 for more information on
initial SIDs.

You could edit this file to change the security contexts associated
with each initial SID. However, more likely you would enhance other
parts of the policy to have explicit statements to address your need
(for example, by adding more portcon statements to label additional
ports).

./net_contexts This file contains all the network-related security context statements
(for example, portcon and nodecon). For example, we saw that the
file ./types/network.te declared various types for specific reserved
ports. This file is where you would assign these types to the ports (for
example, associating a security context with the type ssh_port_t to
TCP port 22).

./genfs_contexts This file contains all the genfscon statements for the policy (that is,
all the security context labeling for filesystems that do not support
extended attributes such as proc). For example, this file would
contain the genfscon statement that labels the procfs filesystem root
directory with a security context containing the type proc_t defined in
the ./types/procfs.te file.

./fs_use This file contains the various fs_use_* statements that define how
object labeling is handled for each filesystem type (see Chapter 10).



These files address all object labeling concerns except the most complex issue (that is, labeling of all
the file-related objects for the various disk-based filesystems). Disk-based object labeling is called file
context labeling, as we discussed in Chapter 10.

To create an initial file context labeling policy, we have the directory ./file_contexts/. This directory
contains a number of files that together with the files in ./file_contexts/misc/ are used to create a
complete file contexts file useable to label and relabel all disk-based filesystems. One directory,
./file_contexts/program/, is directly related to the similarly named module directory in the
./domains/program/ directory. This directory contains .fc files (fc for file contexts) that have the file
context statements associated with the like named module file from the ./domains/program/
directory. When building a complete file contexts file, only those .fc files whose associated policy
module .te file are currently "used" (that is, not in the unused directory under ./domains/program/)
are included. In this way, you can manage both the TE file (.te) and the associated security context
file (.fc) using the same method.

The file ./file_contexts/types.fc defines labeling statements not specific to a program module (for
example, how to label file in /etc/). This file is always included in a strict example policy build. The
file ./file_contexts/distro.fc is similar to types.fc except that it contains configuration options
specific to a particular distribution.

The file ./file_contexts/home_dir_template contains file labeling instructions for files and directories
in a user home directory. This file is a template so that users' home directories can be labeled
depending on users' roles. This file is also installed and used when managing the policy in an
operational system (see Chapter 13, "Managing an SELinux System"). These files, along with the
"used" .fc files, are concatenated during the build process to make a single file_contexts file. This
file is what the setfiles program (and other related programs that use the matchpathcon(3) library)
uses to set and fix disk-based object labels as discussed in Chapter 10.

11.2.1.6. Application Configuration Files

The directory ./appconfig/ contains a set of files that specify security context information that
various services and applications use in running systems. These files are installed in the operational
policy directory (for example, /etc/selinux/strict/contexts). We discuss the purpose of these files
in Chapter 13.

11.2.2. Examining an Example Policy Module

To help understand the strict example policy and how it manages the process of building a policy,
let's examine an example policy module. In particular, let's look at the policy module for the ping
program. A partial listing of this module is shown in Listing 11-1. You should find a similar module in
./domains/program/ping.te or ./domains/program/unused/ping.te.

Listing 11-1. Policy Module for Ping from the Strict Example Policy
(ping.te)



1  type ping_t, domain, privlog, nscd_client_domain;
2  role sysadm_r types ping_t;
3  role system_r types ping_t;
4  in_user_role(ping_t)
5  type ping_exec_t, file_type, sysadmfile, exec_type;
6
7  # Transition into this domain when you run this program.
8  domain_auto_trans(sysadm_t, ping_exec_t, ping_t)
9  domain_auto_trans(initrc_t, ping_exec_t, ping_t)
10 bool user_ping false;
11 if (user_ping) {
12     domain_auto_trans(unpriv_userdomain, ping_exec_t, ping_t)
13     # allow access to the terminal
14     allow ping_t { ttyfile ptyfile }:chr_file rw_file_perms;
15     ifdef(`gnome-pty-helper.te', `allow ping_t gphdomain:fd use;')
16 }
17
18 uses_shlib(ping_t)
19 can_network_client(ping_t)
20 can_resolve(ping_t)
21 allow ping_t dns_port_t:tcp_socket name_connect;
22 can_ypbind(ping_t)
23 allow ping_t etc_t:file { getattr read };
24 allow ping_t self:unix_stream_socket create_socket_perms;
25
26 # Let ping create raw ICMP packets.
27 allow ping_t self:rawip_socket {create ioctl read write bind getopt
setopt };
28
29 # Use capabilities.
30 allow ping_t self:capability { net_raw setuid };
31
32 # Access the terminal.
33 allow ping_t admin_tty_type:chr_file rw_file_perms;
34 allow ping_t privfd:fd use;
35 dontaudit ping_t fs_t:filesystem getattr;
36
37 # it tries to access /var/run
38 dontaudit ping_t var_t:dir search;
39 ifdef(`hide_broken_symptoms', `
40    dontaudit ping_t init_t:fd use;
41 ')

Notice that lines 4, 8 and 9, 12, 18 through 20, and 22 contain macros rather than policy language
statements. Macros using the m4 macro processor are common in example policy source files. These
macros, some of which we examine in this chapter, cause several lines of policy language to be
included into the module source file during the policy compile process.



11.2.2.1. Defining Types for a Domain

Lines 1 and 5 define two types, ping_t and ping_exec_t. The type ping_t is the domain type for the
ping program, and the type ping_exec_t is the type associated with the ping executable file on disk.
Having a domain type and associated file executable type appended with _exec_t is a common
convention. As you can see, several attributes are associated with each type. For example, the
attribute domain is associated with the type ping_t; all domain types have this attribute in the strict
example policy.

Lines 2 and 3 associate the ping domain type with two roles: sysadm_r, which is the privileged user
role; and system_r, which is the role for system processes. Line 4 also associates the ping domain
type with a role, but this time using a macro in_user_role(). We can find this macro defined in
./macros/user_macros.te, as in the following:

define(`in_user_role', `
role user_r types $1;
role staff_r types $1;
')

As you can see, this macro associates the domain type with two additional roles: user_r, which is the
role for ordinary users; and staff_r, which is the unprivileged role for users authorized to change
roles to the privileged sysadm_r role.

Note

M4 macros use string substitution for argument. So, for example, $1 in the macro definition
refers to the first supplied argument, $2 to the second, and so on. As we see in line 4 of the
ping module, the in_user_role macro is invoked with this line:

in_user_role(ping_t)

This invocation provides a single argument ping_t, which is substituted for $1.



User Roles and Domain Type

In the strict example policy, the three standard user roles (sysadm_r, staff_r, and
user_r) have an associated domain type that defines the privileges of programs that are
executed without a domain transition (which would mean they would continue with the
security context and therefore the domain type of the calling user process). For example,
the standard domain type of the role user_r is user_t. Likewise, for the privileged
domain sysadm_r, there is a domain type sysadm_t, which is a fairly powerful domain type
(although nowhere near the power of root in a standard Linux system).

You can examine the policy rules for the unprivileged user domain types (user_t and
staff_t) in ./domains/user.te and for the privileged user domain type (sysadm_t) in
./domains/admin.te.

11.2.2.2. Specifying Domain Transition Rules

Now look at lines 8 and 9, where we have two invocations of the domain_auto_trans() macro. This
macro is probably the most common macro in the strict example policy as it defines the standard
rules to allow a domain transition as we discussed in Chapter 2, "Concepts." You can find the
definition of this macro in ./macros/core_macros.te. The actual macro is quite short as it calls
another macro, domain_trans(), which is defined in the same file:

# $1 is original domain, $2 is executable file type, $3 is new domain
define(`domain_auto_trans',`
domain_trans($1,$2,$3)
type_transition $1 $2:process $3;
')

The domain_auto_trans() macro grants the necessary permissions to allow a domain transition (by
calling the domain_trans() macro) and makes the transition happen automatically by default via a
type_transition rule.

If we further examine the domain_trans() macro, we see many more rules that mostly address
permissions necessary for interprocess communication (IPC) between the parent and child process
types that results from a domain transition. However, this macro also contains the three minimally
required allow rules required for a domain transition as discussed in Chapter 2, specifically the
following:

# key rules from domain_trans macro
# $1 is original domain, $2 is executable file type, $3 is new domain
define(`domain_trans',`
allow $1 $3:process transition;  # old domain can trans to new domain
allow $1 $2:file { read x_file_perms }; # # old domain execute file type
allow $3 $2:file entrypoint;  # new domain can be entered from file type

# remaining domain_trans rules not shown...



')

Notice that the second rule has read and x_file_perms in the permission field. Although read is a
permission for the file object class, x_file_perms is not. Instead, it is a another type of m4 macro
that is replaced with a set of permissions that generally represent "file execute" permissions. We find
this macro defined in ./macros/core_macros.te as follows:

define(`x_file_perms', `{ getattr execute }')

So looking back at lines 8 and 9 from the ping module, we see that the privileged administrator
domain type sysadm_t and the init process script domain initrc_t both are given access to transition
into the ping_t domain, which in effect means they can run the ping program. These two macros
each result in many policy statements via macro processing as we have illustrated.

11.2.2.3. Conditional Policy Example

Starting on line 10, we see an example of a conditional policy block. Line 10 defines the Boolean
user_ping, and lines 11 through 16 contain the conditional clause that uses this Boolean. In this case,
the conditional policy statements use a Boolean variable to control whether unprivileged user
domains are allowed to use the ping program. This is accomplished primarily via the conditional call
to the domain_auto_trans() macro on line 12. Notice that the originating domain for the transition is
an attribute (unpriv_userdomain) rather than a type as in lines 8 and 9. This means that all types
with that attribute are given the set of permissions that grant a domain transition into ping_t. There
is no easy way to determine what those types are in the policy source files; generally, we are
expected to know what that attribute represents and expect that none of the policy source files
violate this expectation. The only practical way to determine the types associated with an attribute is
to use the apol tool discussed earlier in this book.

11.2.2.4. Network and Other Access for Ping

Looking again at the ping module, line 18 invokes a macro that grants the ping_t domain
permissions needed to use and link with shared libraries. Lines 19 through 24 provide various other
access the ping domain will need to network and system resources. Many of these lines invoke
macros that you should explore further at your leisure. For example, take a closer look at line 19 and
the can_network_client() macro, which is defined in ./macros/network_macros.te. Notice that this
macro gives nearly all access to do most types of client networking over all available network
interfaces. This is a coarse level of permission, and SELinux will allow you to be much more explicit in
network control. However, this type of macro is common in general-purpose policies such as the
example policy (although later versions of the example policy have attempted to improve this). As
you can see lines 20 through 22 and line 27 provide additional network access over and above what
can_network_client() provides. Take some time to further explore all of these macros.

Tip



To examine what a macro does, you must first find it. The easiest way to do this is to use
grep from the policy macro directory ./macros. For example, to find the definition of the
uses_shlib macro from line 18 of the ping module, do the following:

# cd /etc/selinux/strict/src/policy/macros
# grep -r uses_shlib * | grep define
global_macros.te:define('uses_shlib','

Let's look at line 30 of the ping module. Here we see the ping_t domain type is given access to itself
using the self keyword for the capability object class. This object class controls the Linux
capabilities; it only ever makes sense to give domains permissions to itself for this object class. In
this case, we are giving ping_t permission to use the privileged capabilities necessary to perform raw
networking and to use the setuid kernel call to change user IDs (that is, in this case to change to
root).

The remaining allow rules in lines 33 and 34 give the ping_t domain permission to interact with
terminal devices for display of output. Neglecting to provide access for terminal devices is a common
mistake.

11.2.2.5. Audit Rules

Finally, we have a couple examples of dontaudit rules. These rules are used to mask out access
denials we expect that do not prevent ping from functioning. It is not uncommon for Linux
applications to attempt to use more permission than they need. Rather than grant them this
excessive access, it is better to let the access denial occur, but filter out the resulting audit message
using dontaudit rules so that the audit log is not polluted.

11.2.2.6. File Security Contexts Labeling

The final component of the ping module is the file context statements used to correctly label the
ping-related files and directories. You can find the ping file contexts in
./policy/file_contexts/program/ping.fc. For example:

/bin/ping.*            --      system_u:object_r:ping_exec_t

This file contexts specification causes the setfiles utility to label any file in /bin/ that starts with
ping (on our system that includes ping and ping6, both versions of the standard ping program) with
the specified security context which includes the file executable type ping_exec_t.

11.2.3. Build Options for Strict Example Policy

The strict example policy source tree provides a few basic configuration options that enable us to



control the contents of the kernel policy. These configuration options allow some control over the
content of the resulting policy without having to write policy statements.

11.2.3.1. Configuring Policy Modules

We can control which policy modules are included in the policy by using the unused/ directories
discussed previously. So, for example, if we did not want the ping policy module included in our
policy, we would move the file ping.te from ./domains/program/ to ./domains/program/unused/. This
will prevent ping.te (and the associated ping.fc) file from being included in the policy build.

You may find yourself removing many modules to customize the policy for your particular installation.
Although extraneous policy modules (that is, for programs that are not installed) will generally not
impact the operation of the system, it will add memory usage inside the kernel. In some cases (for
example, a Web browser), the absence of a policy is less desirable because the application would run
in the user's domain with more access than it would in a more restrictive browser domain.

Including unwanted policy modules also creates the risk that software may accidentally be installed
and then have the privilege to run. For example, suppose we did not want any user to run the ping
program, so we did not install the software, but we forgot to remove the ping policy module. If, at
some later date, we installed a software package that installed its own version of ping (because it
needed it and its installation script saw that it was not installed), all of a sudden our users have
access to ping! If we had removed the ping policy module in our original policy, when the software
package installed its ping program, users would not be able to use the program because there would
be no domain ping_t defined. (That is, it would likely get a common utility label like bin_t that would
allow users to execute it in their domain, but not in the more privileged ping_t domain.)

11.2.3.2. Enabling Optional MLS Features

We have mentioned throughout this book the optional capabilities for MLS policies and the related
multicategory security (MCS) configuration that uses the MLS optional features. By default, the strict
example policy configuration does not enable either of these configurations for the MLS features. To
use the MLS features, the policy must be compiled with a special option to tell the kernel that MLS is
being used. More important, all security contexts must be extended with the required MLS
sensitivities, as discussed in Chapter 8.

The strict example policy Makefile has configuration options to automate these steps. If you look
near the top of the Makefile (./Makefile), you will see the following:

# Set to y if MLS is enabled in the policy.
MLS=n
# Set to y if MCS is enabled in the policy
MCS=n

Setting either of these flags tells the checkpolicy compiler to build a policy that has the optional MLS
features enabled. When this policy is loaded into the kernel, this will in turn tell the kernel to use the
optional MLS features for access enforcement. You should not enable both of these options as they
are mutually exclusive.



Enabling either the MLS or the MCS option only builds a policy file that has MLS enabled. It will not
ensure that all the various security context specifications are extended to include the extended MLS
security context information. The strict example policy comes with make targets that perform a basic
reconfiguration of all security contexts: make mlsconvert and make mcsconvert. These targets will
change all security contexts throughout the policy; however, the MLS portion of the security context
will generally be inadequate for a real MLS system. More than likely, you will have to build your own
file contexts that label all files, directories, ports, network interfaces, and so on as appropriate for
your MLS applications. For example, make mls will change ping.te to this:

/bin/ping.*            --      system_u:object_r:ping_exec_t:s0

See Chapter 8 for more information on MLS security contexts.

Warning

Using either make mlsconvert or make mcsconvert will permanently change the security
context specifications throughout the example policy source files. There is no mechanism
for returning to the original state. Therefore, you are advised to make a copy of the source
tree before trying this feature.

Both of these configuration options will set the corresponding MLS=y or MCS=y option in the
Makefile. You do not need to manually set these options if you use these make targets.

11.2.3.3. Build-Time Tunables

In the directory ./tunables/ are two files, distro.tun and tunable.tun, that allow us to
enable/disable configuration options that are built in to the various policy modules of the strict
example policy. The distro.tun file is used for distribution-specific configuration options. For
example, on our FC4 system, the file contains the following:

define('distro_redhat')
dnl define('distro_suse')
dnl define('distro_gentoo')
dnl define('distro_debian')

This file indicates that the distro_redhat options are enabled and not the various other distributions.
(dnl is a m4 command meaning "discard up to newline.") The tunables.tun file has similar options
that we can configure to be on or off controlling more general (that is, nondistribution specific)
options.

Throughout the policy modules, statements are included within m4 ifdef clauses that will or will not
be included in the policy depending on whether a tunable is enabled or disabled. For example, in lines
39 through 41 of the ping module in Listing 11-1, we have a dontaudit rule included within
ifdef('hide_broken_symptoms'), which is an m4 ifdef statement. If you look in
./tunables/tunable.tun, you see will see this option and whether it is enabled.





11.3. Targeted Example Policy

The target example policy is derived from the strict example policy, and its structure and organization
are nearly identical. Whereas the strict policy attempts to make maximum use of all the SELinux
power to provide strong security for most programs, the targeted policy has a goal to isolate high-
risk programs and otherwise make SELinux neutral. The benefit of the targeted policy is that
significant security can be added to a Linux system while reducing the risk of causing problems with
existing user programs. The targeted policy primarily focuses on network-facing system services
(that is, those components most likely to be attacked by outsiders) and generally enforces no
additional restrictions on local programs and ordinary users. The targeted policy is the standard
policy for RHEL and FC systems because it strikes a good balance between enhanced security while
reducing the risk of excessive application breakage.

If installed (see Appendix A), we should be able to see the targeted example policy sources in
/etc/selinux/targeted/src/policy/. In most respects, the targeted example policy source looks
exactly like the strict example policy sources so we do not provide a detailed overview of the targeted
file structure. We instead highlight the differences.

The primary difference between strict and targeted example policies is the use of the unconfined
domain type (unconfined_t) and removal of any other user domain type (for example, sysadm_t,
user_t). This also means the basic role structure of the strict example policy is removed (all users
run as system_r) and that nearly all user-run programs execute with the unconfined_t domain type.

We can find the unconfined domain defined in ./domain/unconfined.te. Notice that in the targeted
example policy, the strict policy files admin.te and user.te are no longer present in ./domains/.
These files define the various user domains for the strict example policy, each of which has limited
privilege. In targeted example policy, all programs run with unconfined_t domain type unless they
are specifically "targeted" (hence the name). The unconfined domain essentially has access to all
SELinux types, making it largely exempt from the SELinux security controls (hence "unconfined").

This leads to the next major difference between strict and targeted policies (that is, the targets
themselves). In the strict example policy, ./domains/program/ contains many policy modules, each of
which represents one or more domain types and associated types and rules for specific programs. In
the targeted example policy, this directory contains a smaller set of files; these are the targets.

The target example policy modules are similar to the policy modules in strict policy. For example, we
should find the strict ping module and the targeted ping module to be identical. However some of the
targeted modules simply define types but then make the domain unconfined (rather than targeted).
For example, if we look at the targeted policy for crond (crond.te), we will find the line
unconfined_domain(crond_t). This macro, which is defined in ./policy/macros/global_macros.te for
the targeted example policy, effectively gives the crond domain type all SELinux access, making it
unconfined. If we compare this with the strict version of the crond module
(/etc/selinux/strict/src/policy/domains/program/crond.te), we will see a significant difference. In
targeted policy, crond is considered an unconfined domain, whereas ping remains a strict domain in
both policies.

The remaining differences between strict and targeted example polices are subtle and outside the



scope of this book. You will find that the make targets and build options are all similar to strict.



11.4. Summary

The goal of strict policy is to make maximum use of SELinux to provide separate domain types
for each program that reasonably needs one. The strict example policy is most directly reflective
of the original NSA example policy that has evolved through many years of community
development.

Targeted example policy is derived from the strict example policy. The goal of the targeted
policy is to use SELinux to isolate high-risk system services from the rest of the system.
Targeted policy runs most programs in an unconfined domain that essentially neutralizes the
enhanced security of SELinux. Only the targeted services have enhanced restrictions.

Both strict and targeted example policy source trees are similar in nature. They have evolved
over time, and contain a large set of files and directories.

The build conventions for strict example policy use a loose modular construct that allows the
policy source file to be structured on a per-domain basis. In this way, we can decide which
program domains we want to include and which we do not. The m4 macro processor is used to
provide abstract concepts in the policy sources.

The primary difference between the strict and targeted policies is that the targeted policy limits
the permission sets of a few outwardly vulnerable services while providing no extra limits for
local users and programs; whereas the strict policy defines permission sets for all users and
most applications and services.

FC4 and RHEL4 systems use the targeted example policy as their default supported policy.



Exercises

1. Describe the differences and uses between a policy binary file (for example, policy.19)
and a complete policy source file (policy.conf).

2. Describe the primary differences between a strict and targeted policy.

3. Describe the difference between the policy source modules in ./domains/program/ and
the file context modules in ./file_contexts/program/. What is in each and why?

4. In the policy module for ping shown in Listing 11-1, examine the statements at lines 11
and 39. What is the difference between these two forms of "if"?

5. Examine lines 19 and 20 in Listing 11-1. Locate where both of these macros are defined.

6. Examine lines 19 and 20 in Listing 11-1. Locate where both of these macros are defined.

7. Examine the usage and implementation of two network macros from Question 5. Notice
that the implementation of the can_resolve macro that we use in line 20 calls the
can_network_client macro. In line 19, we also separately invoke the
can_network_client macro. Now examine the implementations of both of these macros.
Is the invocation of can_network_client on line 19 redundant given that the can_resolve
macros also invokes it? Explain your conclusion.
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The reference policy is a newer method for building SELinux policies with the goal of making the
policy easier to understand, modify, maintain, and validate. These goals are largely achieved through
greater application of modern software engineering principles, such as modularity and encapsulation.
The reference policy also allows strict and targeted policy variants to be built from the same source
tree and incorporates support for emerging SELinux technologies, such as loadable modules.



12.1. Goals of the Reference Policy

The reference policy project is an effort to reengineer the existing policies derived from the National
Security Agency (NSA) example policy into an easier to use, understand, and maintain policy. The
primary goals are to create a strong design philosophy in policy development by applying well-
understood software design principles, while retaining the years of experience learned by community
effort in developing the existing policies. In other words, keep the good and fix the bad.

Chief among the "bad" with the existing example policy is its lack of strong modularity and the tight
coupling of the policy source modules that results. Although macros add abstraction to the example
policy, all policy identifiers (types, roles, attributes, and so on) are, in reality, global. Editing one
policy module might require knowledge of many others and interdependency among modules is
pervasive and poorly documented. Likewise, creating a new policy module requires detailed
understanding of the implementation details of other policy modules.

Some of the key characteristics of the reference policy that make policy development easier and
more understandable are as follows:

A single source tree that supports (without destructive modification) strict and targeted policies,
optional multilevel security/multicategory security (MLS/MCS) extensions, a single kernel policy
file (called a monolithic policy), and the new loadable module infrastructure.

Application of strong design principles, chiefly in the area of loosely coupled modules, with well-
defined interfaces and no global use of type and other identifiers. (So, for example, all changes
relating to a type are made entirely within a single module.)

Integrated documentation support, capturing descriptions of module interfaces so that, for
example, a policy module developer can use an interface without having to understand how the
interface is implemented in the module.

Simplify and standardize policy configuration and build options, so in general policy module
writing and customization is easier and requires less expertise.

Besides making policy development easier, the reference policy also intends to make verifying the
security properties of a policy easier to achieve (for example, for security certifications) and to
increase support for high-level developments tools, such as graphical integrated development
environments and sophisticated policy debuggers.

The reference policy is new, but we expect it to gain popularity as the definitive "reference" for
building SELinux systems. At the time of this writing, Fedora Core 5 (FC5) has changed its supported
policy from the older targeted example policy to a targeted policy based on the reference policy.

Warning



The reference policy is new at the time of this writing, with its initial development just
nearing completion. Therefore, it is likely that some details of the reference policy have
changed since this book was published.

For more information on the reference policy project and the latest policy sources, see the project's
Web site at http://serefpolicy.sourceforge.net. If you are using an FC5 system, your default targeted
policy is likely based on a reference policy build. If you have a reference policy installed on your
system according to our instructions in Appendix A, "Obtaining SELinux Sample Policies," you can find
the reference policy source files in /etc/selinux/refpolicy/src/policy. If you obtained a reference
policy source tree from your distribution, the source files may be in a different directory under the
/etc/selinux/ directory. (FC5 installs its version of the targeted reference policy in
/etc/selinux/targeted/.) All path names we use in this chapter are relative to the policy source root
directory.

http://serefpolicy.sourceforge.net


12.2. Overview of Policy Source File Structure

The file structure for the reference policy differs from the example policy. Before we describe the key
implementation details of the reference policy, let's overview the layout of the reference policy source
files to familiarize ourselves with its file structure.

12.2.1. Build and Support Files

The following files and directories are used for building or otherwise supporting the building of a
reference policy:

build.conf This file defines the set of build options that we can change and set
to control the build process. This file is included within the Makefile
during the make process. We will discuss some of these build options
later in this chapter.

Rules.modular This file contains the make rules for building a policy that supports
loadable modules (see Chapter 3, "Architecture"). It supports
building both the base policy module and loadable policy modules.
Which modules are built as part of the base module, and which are
built as loadable modules, is defined in policy/modules.conf (see
below). The build option MONOLITHIC in build.conf controls whether a
modular or monolithic policy is built.

Rules.monolithic If a monolithic policy is being built, this file (rather than
Rules.modular) is included in the Makefile to define the rules for
building a monolithic policy.

config/ This directory contains subdirectories for the application configuration
files for every variety of policy that can be built with the reference
policy. These configuration files are exactly the same as the files in
the appconfig/ directory for the example policy. These are files
installed in the operational policy directory (for example,
/etc/selinux/refpolicy) to support various services and applications
(see Chapter 13, "Managing an SELinux System").

doc/ This directory contains files that support integrated documentation
generation that is part of the reference policy. To see the resulting
documentation generation, view the reference policy Web site
(http://serefpolicy.sourceforge.net/) or run the command make html
and look in the doc/html/ directory.

support/ This directory contains source code and scripts for the tools used to
support the build process.

http://serefpolicy.sourceforge.net/


12.2.2. Core Policy Files

In the reference policy, the primary files used to create a policy (or loadable modules) are contained
in the policy/ directory. These are the files that we, as policy writers, will most commonly modify
and examine:

policy/constraints This file is where all non-MLS constraints are defined. It is essentially
identical to the same file in the example policy. See Chapter 7,
"Constraints," for more on policy constraints.

policy/flask/ This directory contains the Flask definitions identical with the example
policy. See the description for the example policy in Chapter 11,
"Original Example Policy," for this directory and its files.

policy/mls and policy/mcs These two files define two configurations for the optional MLS
features in SELinux. They are identical in intent to the same files in
the example policy; see the description in Chapter 11.

policy/global_booleans and
policy/global_tunables

These two files currently store defined Booleans and their default
values. They are combined and installed in
/etc/selinux/refpolicy/booleans and enable an administrator to
change the default values of Booleans as we discussed in Chapter 9,
"Conditional Policies." The reason for two files is one of a philosophy
that may eventually lead to a difference in implementation. The
global_booleans file contains Booleans intended to support truly
conditional policies that an administrator may want to toggle on and
off in a production system. The global_tunables contains Booleans
that are build/runtime configuration options that are likely changed
once during installation and never changed again. Some of these
latter Booleans (that is, the tunables) may be implemented using
features of loadable modules in the future.

policy/modules.conf This file configures which modules are to be included in a build
process and in what form. A module can be built in to a monolithic
policy or the base module for a loadable policy, built as a loadable
module, or not built at all. The modules.conf file is created with the
make conf command. We discuss module configuration options later
in this chapter.

policy/modules/ This directory contains all the policy modules divided into
subdirectories by layer. Most of the files that we would examine, edit,
and change will be in this directory. We discuss modules and layers in
the next section.

policy/support/ This directory contains macros used throughout the policy modules to
aide in policy writing. For example, the file
policy/support/obj_perm_sets.spt defines macros that define sets of
permissions. We use these macros to simplify some of the policy
writing steps and to create easier to read policy.



policy/users This file is the same as the users file in the example policy though it
uses an interface (that is, a macro), gen_user(), to create the user
statements; see the description in Chapter 11.

policy/users This file is the same as the users file in the example policy though it
uses an interface (that is, a macro), gen_user(), to create the user
statements; see the description in Chapter 11.



12.3. Design Principles

The reference policy is structured around several design principles. These principles are focused on
achieving the goals of the project. Currently, most of these principles are enforced only through
convention; as high-level development environments and tools evolve on top of the reference policy,
we expect to see these principles start to be more strictly enforced by the build tools themselves.

12.3.1. Layering

As discussed in the next section, the reference project achieves most of its design goals through
strong modularity. A weak, although still important, design principle of the reference policy is the
layering of its modules. The layers provide a loose organizational structure for the modules that
reflects the overall system architecture. Figure 12-1 depicts the layers currently defined for reference
policy.

Figure 12-1. Reference policy layers and sample modules within a layer

[View full size image]



In general, the reference policy tries to keep dependencies between modules within a layer or to a
layer "below" the module's layer. We can find the layer directories, which contain the modules for
each layer, in policy/modules/. The reference policy currently defines the following layers:

Kernel This layer contains policy modules that directly relate to the Linux kernel. This is the
lowest layer of modules. Modules at this layer include policy statements for the kernel, devices,
filesystems, and basic networking. Most of these modules will always be included in any type of
policy.

System These are policy modules that are also usually included in a policy but do not directly
support the kernel. Modules at this layer include policy for common libraries, login processes,
and network management.

Services This layer contains policy modules for all services and daemons not part of the system
layer. These modules range from cron, to sshd, to apache.

Admin This layer contains policy modules for administrative tools and commands that have their
own domain type.

Apps This layer contains policy modules for all other programs that have their own domain type
and policy module.

Again, the layering is not strictly enforced and is primarily useful as a way to organize the collection
of modules. As you can see from Figure 12-1, some of the layers are really peer groupings rather
than "layered" (that is, services, admin, and apps).

12.3.2. Modularity

Modularity is the strongest design principle of the reference policy. Although the example policy
discussed in Chapter 11 has a notion of modules, these modules have loose conventions resulting in
tightly coupled modules (primarily due to the use of global type and attribute names). In the
reference policy, modules are required to be loosely coupled. This loose coupling is achieved through
the enforcement of two strong design conventions: encapsulation and abstraction.

12.3.2.1. Encapsulation

Encapsulation is a reference policy modularity convention that requires that type and attribute names
may only be used within a single module. In effect, type and attribute names may not be used as
global names. Only the module that defines the type/attribute may reference the name directly. Any
other module that would require the use of the type/attribute must do so through well-defined
interfaces that the owning module defines.

For example, in the example policy, all types that are domain types are given the domain attribute.
Every policy module simply has this knowledge built in and explicitly adds domain to the list of
attributes for all domain types they define. If we decided to change how the concept of a domain was
implemented in the policy (say by granting each type explicit rules or even by renaming the
attribute), we would have to change every module that defines a domain type.



In the reference policy, a module called "domain" in the kernel layer defines the concept of a domain.
It just so happens that this concept is implemented using the domain attribute as with the example
policy. However, this implementation detail is private to the domain module and could be changed
(for example, renamed) without impacting any other module source. Any module that wants to make
one of its types a domain type would call an interface defined in the domain module:

domain_type(my_type)   # interface to make a type a domain type

The domain module interfaces in policy/modules/kernel/domain.if; we discuss this interface in more
detail later in this chapter.

Encapsulation enables us to make the reference policy modules' implementation details private to the
module resulting in loosely coupled modules.

12.3.2.2. Abstraction

Abstraction is a design goal where interfaces describe what abstract access they provide and not how
they do it. The intent of reference policy interfaces is to describe what abstract access is given or
system capability is being enabled with the interface. The policy statements required to enable that
access should not be a concern of the interface caller. For example, the macro we discussed
previously to make a type a domain type is called domain_type() and not add_domain_attribute().
The intent of the interface is to make a type a domain type; doing this by adding the domain attribute
is just the private implementation detail of the domain_type() interface. This interface could have
instead simply added explicit rules for each individual type provided with the interface, and we can
still change that implementation if we choose without impacting other modules that use this interface.

As another example, to allow a directory to be used as a mount point we would call the
file_mountpoint() macro in the "files" module. We do not need to know that the implementation of
this interface applies the attribute mountpoint to all directory types called with this interface and then
defines rules for the attribute to allow the type to be used as a mount point. As a policy writer, all we
need to know is that the file_mountpoint() interface is how we allow a directory type to be a mount
point.

Currently, the reference policy has a low-level of interfaces implemented within each module.
Eventually higher-level abstractions will be developed through additional interfaces that combine the
lower-level interfaces.

12.3.2.3. Module Files

As discussed earlier, within the reference policy source tree all modules are kept in
policy/modules/[layer]/ where the layer is a directory whose name coincides with one of the layers
discussed previously. Each module must consist of three related files, all of which have the same root
name (that is, module name):

Private policy file (.te) This file contains the module private declarations and rules. In general,
all module type and attribute declarations are contained in the .te file and the rules that give
these types and attributes their core access.



External interface file (.if) This file contains the module interfaces. These interfaces are the
means by which other modules access the types and attributes of this module.

Labeling policy file (.fc) This file contains the file context labeling statements relating to this
module (see Chapter 10, "Object Labeling").

Because a strong requirement is that no type or attribute be global, only the .te and .if file for a
given module may use the module's type/attribute names explicitly. All other references to a
module's types and attributes must be via the module's interfaces.

12.3.2.4. Interfaces

As discussed previously, one of the most significant improvements implemented in the reference
policy is the use of interface macros for gaining access to a type outside of the module in which the
type is defined. Interfaces provide access to a module's policy resources (for example, to its privately
declared types and attributes). All other modules needing a particular access use the same interface;
therefore, the policy rules required for the access will be consistent across all users of the interface.
Therefore, policy changes for access to a type require only a change in one place, rather than
requiring changes to all the modules that use the type as is common in the example policy.

As noted above, interfaces are kept in a module's .if file and are implemented as macros. Currently,
reference policy supports two kinds of interfaces: access interfaces and template interfaces.

The name we give each interface follows the convention of modname_purpose. So, for example, we can
tell that the domain_type() interface is defined in the "domain" module and its purpose is to make a
provided type a domain type. (We avoid the verbose name such as domain_domain_type() when the
module name is also part of the purpose.)

12.3.2.4.1. Access Interfaces

The most common kind of interface is called an access interface. As its name implies, the purpose of
an access interface is to provide some type of access that requires use of the module's private types
and attributes. Access interfaces are implemented using the interface() macro. The domain_type()
interface is an example of an access interface. Let's examine this interface more closely (see Listing
12-1).

Listing 12-1. Partial Interface Listing for domain_type Access Interface
(domain.if)



1 ########################################
2 ## <summary>
3 ## Make the specified type usable as a domain.
4 ## </summary>
5 ## <param name="type">
6 ## Type to be used as a domain type.
7 ## </param>
8 interface('domain_type','
9    domain_base_type($1)
10
11   # Use trusted objects in /dev
12   dev_rw_null_dev($1)
13   dev_rw_zero_dev($1)
14   term_use_controlling_term($1)
15
16   # read the root directory
17   files_list_root($1)
18
19   # send init a sigchld and signull
20   init_sigchld($1)
21   init_signull($1)
22
23   ifdef('targeted_policy','
24         unconfined_use_fd($1)
25         unconfined_sigchld($1)
26   ')
27
28   tunable_policy('allow_ptrace','
29         userdom_sigchld_sysadm($1)
30   ')
31
32   # allow any domain to connect to the LDAP server
33   optional_policy('ldap','
34         ldap_use($1)
35   ')
36 ')

In line 8 of Listing 12-1, we see the interface() macro, which is implemented as an m4 macro, as are
all macros in reference policy. The interface() macro is what we use to define an access interface.
This and other macros that support the conventions and build process of reference policy (collectively
called support macros) are located in one of the files in policy/support/ directory. The interface()
macro handles the details of defining an interface and a central spot where debugging and other build
information can be inserted into the results. Therefore, we must always use the interface() macro
to define an access interface.

The purpose of the domain_type() interface is to allow the provided type (the only argument for this
macro, $1) to be used as a domain type in the policy. We see a description of the interface and its
arguments in lines 1 through 7. Reference policy uses XML to capture information about interfaces
and other aspects of the policy for generation of documentation. In this case, we have a summary of
the interface purpose and a list of its parameters, all of which will be included in a list of interfaces



when the documentation is generated.

Lines 9, 12 through 14, 17, 20, and 21 are all calls to other interfaces. The name of an interface give
us a hint of the module where the interface is defined. As noted, by convention, the first component
of all interface names is the name (or partial name) of the module in which the interface is defined.
For example, the interfaces dev_rw_null_dev() and dev_rw_zero_dev() are defined in the "devices"
module (policy/modules/kernel/devices.if) and the interface files_list_root() in the "files"
modules (policy/modules/kernel/files.if). We can examine each of these interfaces to see how
they are implemented or we can examine the interface documentation if all we want is a description
of each interface.

Note

The command make html creates the reference policy documentation including the interface
descriptions; open doc/html/index.html with a browser to see the documentation.

Lines 23 through 26 show a use of the m4 ifdef statement. Although ifdef was commonly used in
the example policy, for reference policy the use of ifdef is greatly limited by convention (see the
sidebar on page 184 for more information). In this case, we call additional interfaces (from the
targeted policy-specific "unconfined" module) if we are building a targeted policy. The symbol
targeted_policy is defined as part of the build process based on the options in build.conf, which we
discuss later in this chapter.

Lines 28 through 30 show another support macro, tunable_policy(). The purpose of this macro is to
allow conditional behavior based on the value of a defined tunable. As noted previously, tunables,
which are intended as build/install time policy options, are defined in policy/global_tunables.
Currently, tunables are implemented using Booleans, but eventually with loadable modules we expect
the implementation of tunables to differ from conditional policy Booleans. In this case, we have a
tunable allow_ptrace, which when true allows the administrative user domain(s) to debug any other
user domain type.

Finally, let's examine lines 33 through 35 of Listing 12-1, where we have an example of the
optional_policy() support macro. This macro enables us to optionally call an interface depending on
whether a module is included in the policy. This support macro implements this capability differently
depending on whether a monolithic policy, base module, or loadable module is being built.
Nonetheless, the concept from a policy writer's perspective is the same. If the module is being
included in the build process (in this case, the ldap module), the interface ldap_use() is also called.



Allowed Uses of ifdef

In the reference policy, the m4 ifdef statement may only be used, by convention, for a
limited set of defined conditions. These become hard-coded implementation variations
within the policy build process. All other forms of policy options must use either the
native conditional policy statements (if) based on Booleans defined in
policy/global_booleans or one of the reference policy support macros such as
tunable_policy() for tunables defined in policy/global_tunables or optional_policy()
for optional policy statements based on the name of a module. These support macros
allow us to change the implementation of these concepts to better support the build
process and development tools in the future.

The only allowed use of ifdef in reference policy is with the following defines:

targeted_policy This is defined when a targeted policy is being built.

strict_policy This is defined when a strict policy is being built.

enable_mls This is defined when the optional MLS policy is being built.

enable_mcs This is defined when the optional MLS features are being
used to build an MCS policy.

hide_broken_symptoms This is used to control dontaudit rules; we place all such
rules that mask expected denial audit messages (that is, due
to access we intentionally did not allow but we expect the
program to attempt even though it is not needed). These
dontaudit rules help remove benign "false positive" audit
messages we expect to see during normal operation.

direct_sysadm_daemon This enables us to determine whether the policy permits the
system administrator user domains to directly control
daemons that otherwise are started and controlled by init.
Note that if this is disabled, the administrator may still
control daemons with the run_init tool.

distro_tunable One of several distribution tunables can be set for policy
variations specific to a particular distribution of Linux. For
example, redhat is the tunable for Fedora Core (FC) and Red
Hat Enterprise Linux (RHEL) systems, and gentoo is the
tunable for Gentoo systems.

12.3.2.4.2. Template Interfaces

The second type of interface is a template interface, which is far less common than an access
interface. A template interface is necessary when two modules share responsibility for one or more
types. We call this kind of a type a derived type. A derived type name is derived from the calling



module's type. From a logical perspective, the derived type is considered a private type of the calling
module. However, the definition of the derived type and the core set of rules that define access for
that type are implemented in a template interface in another module (that is, the called module).
This is necessary because the called module is creating access rules for policy permissions only it
understands, but on behalf of the calling module. In all cases, the derived type name is partly based
on a name provided by the calling module and a name provided by the called module. Neither fully
knows the name; this keeps our abstraction intact and allows us to change the template interface
without impacting the calling module.

An example of a derived type and a template interface can be found in the ssh module, which
implements the client and server policy rules for the Secure Shell service (sshd). We should find this
module in policy/modules/services/ssh.*. In particular, we want to examine the template interface
ssh_per_userdomain_template(), a partial listing of which is shown in Listing 12-2.

Listing 12-2. Partial Interface Listing for ssh_per_userdomain_template
Interface (ssh.if)

 1 #######################################
 2 ## <summary>
 3 ## The per user domain template for the ssh module.
 4 ## </summary>
 5 ## <desc>
 6 ## <p>
 7 ## This template creates a derived domains which are used
 8 ## for ssh client sessions and user ssh agents.  A derived
 9 ## type is also created to protect the user ssh keys.
10 ## </p>
11 ## <p>
12 ## This template is invoked automatically for each user and
13 ## generally does not need to be invoked directly
14 ## by policy writers.
15 ## </p>
16 ## </desc>
17 ## <param name="userdomain_prefix">
18 ## The prefix of the user domain (for example, user
19 ## is the prefix for user_t).
20 ## </param>
21 ## <param name="user_domain">
22 ## The type of the user domain.
23 ## </param>
24 ## <param name="user_role">
25 ## The role associated with the user domain.
26 ## </param>
27 template('ssh_per_userdomain_template','
28    ##############################
29    # Declarations
30
31    type $1_home_ssh_t;
32    userdom_home_file($1,$1_home_ssh_t)
33    role $3 types $1_ssh_t;



34
35    type $1_ssh_t;
36    domain_type($1_ssh_t)
37    domain_entry_file($1_ssh_t,ssh_exec_t)
38
39    type $1_ssh_agent_t;
40    domain_type($1_ssh_agent_t)
41    domain_entry_file($1_ssh_agent_t,ssh_agent_exec_t)
42    role $3 types $1_ssh_agent_t;
43
44    type $1_ssh_keysign_t; #, nscd_client_domain;
45    domain_type($1_ssh_keysign_t)
46    domain_entry_file($1_ssh_keysign_t,ssh_keysign_exec_t)
47    role $3 types $1_ssh_keysign_t;
48
49    # Private policy for each derived types not shown
50    #     see policy/modules/ssh.if
51
52    # remainder not shown...
53 ')

The ssh_per_userdomain_template() interface creates a per-domain set of derived types that allow
each domain to have private types for their ssh sessions and cryptographic keys. Because the ssh
module cannot (and should not for modularity reasons) know all the possible domain types that need
a per-domain ssh type, it cannot possible directly create the rules necessary in its .te file. Likewise,
any given module that wants an ssh private type for its domains cannot (and again should not)
possibly know how to implement ssh private session and key types. Thus the need for a template
interface.

As you can see from Listing 12-2, this interface takes three arguments: the base type name prefix
(for example, for the domain type user_t we would provide the prefix user), the user domain type
(for example, user_t), and the primary role associated with the user domain. A template interface
has two primary sections. The first section is where the derived types are created (using the provided
type name prefix). We can see these declarations in lines 31 through 47 of Listing 12-2. For example,
line 35 defines the main derived domain type. If the prefix were user, the derived domain type would
be user_ssh_t and that would be the domain type for the ssh client when the domain user_t runs it
(as implemented by this interface). As you can see, three other derived types are also created for
various aspects of an ssh session.

The second part of a template interface is the private rules for the derived type. This is where rules
are defined for all derived types of this kind, and it is the one place we need to change them. We do
not examine these rules in this book, but you are encouraged to do so on your own. Although
template interfaces are uncommon, they are valuable to simplify certain types of policy writing.



12.4. Examining a Reference Policy Module

To help further understand how the reference policy works, let's examine all aspects of the policy for
the ping program as we did with the example policy. Whereas in the example policy the ping
program had its own module, in the reference policy ping is included in a module that addresses all
administrative network utilities (netutils). We can find this module in
policy/modules/admin/netutils.*.

Note

In the reference policy, we try to package policy pieces in ways that make sense for
installation with software packages. Reference policy is mostly influenced by the packaging
conventions for FC. This allows us to define modules that can be built as loadable modules
and installed as part of the package installation (the real benefit of loadable modules). This
is the reason that ping is coupled with a number of other network utilities; these utilities
are all part of the same software package in FC (specifically the iputils package).

Listing 12-3 shows a partial listing of the netutils.te module file, focusing on those components
related to ping. Recall that the .te file is the file that contains the module's private declarations and
rules. This is the file in which we would generally expect to find type and attribute declarations. First
notice the use of the policy_module() support macro on line 1. All modules must use the
policy_module() as their first line in their .te file. This macro requires two arguments: the name of
the module and the version of the module. Currently, the policy_module() support macro effects only
the build process when the module is being built as a loadable module. Nonetheless, its use is
mandatory for all modules, and its function will likely evolve over time (for example, better
debugging support).

Listing 12-3. Partial Listing for netutils (ping) Private Module File
(netutils.te)

 1 policy_module(netutils,1.0)
 2 ########################################
 3 # Declarations
 4 type ping_t;
 5 type ping_exec_t;
 6 init_system_domain(ping_t,ping_exec_t)
 7 role system_r types ping_t;
 8
 9 ########################################
10 # Ping local policy



11 allow ping_t self:capability { setuid net_raw };
12 dontaudit ping_t self:capability sys_tty_config;
13
14 allow ping_t self:tcp_socket create_socket_perms;
15 allow ping_t self:udp_socket create_socket_perms;
16 allow ping_t self:rawip_socket { create ioctl read write bind
   getopt setopt };
17
18 corenet_tcp_sendrecv_all_if(ping_t)
19 corenet_udp_sendrecv_all_if(ping_t)
20 corenet_raw_sendrecv_all_if(ping_t)
21 corenet_raw_sendrecv_all_nodes(ping_t)
22 corenet_tcp_sendrecv_all_nodes(ping_t)
23 corenet_udp_sendrecv_all_nodes(ping_t)
24 corenet_tcp_sendrecv_all_ports(ping_t)
25 corenet_udp_sendrecv_all_ports(ping_t)
26 corenet_udp_bind_all_nodes(ping_t)
27 corenet_tcp_bind_all_nodes(ping_t)
28
29 fs_dontaudit_getattr_xattr_fs(ping_t)
30
31 domain_use_wide_inherit_fd(ping_t)
32
33 files_read_etc_files(ping_t)
34 files_dontaudit_search_var(ping_t)
35
36 libs_use_ld_so(ping_t)
37 libs_use_shared_libs(ping_t)
38
39 sysnet_read_config(ping_t)
40 sysnet_dns_name_resolve(ping_t)
41
42 logging_send_syslog_msg(ping_t)
43
44 ifdef('hide_broken_symptoms','
45     init_dontaudit_use_fd(ping_t)
46 ')
47
48 ifdef('targeted_policy','
49     term_use_unallocated_tty(ping_t)
50     term_use_generic_pty(ping_t)
51     term_use_all_user_ttys(ping_t)
52     term_use_all_user_ptys(ping_t)
53 ','
54     tunable_policy('user_ping','
55            term_use_all_user_ttys(ping_t)
56            term_use_all_user_ptys(ping_t)
57     ')
58 ')



On lines 4 through 7, we define our domain type (ping_t) and entrypoint type (ping_exec_t). These
two types serve exactly the same purpose as with the example policy. Indeed, the goal of the
reference policy implementation of the ping domain type is to be the functional equivalent to the
policy rules in the example policy (but implemented in an entirely different manner). Notice on line 6
that we call an interface from the init module that allows the ping domain to be used in system
initialization scripts. As a point of comparison, this interface performs nearly the exact same purpose
as the macro called on line 9 of the example policy ping module in Listing 11-1.

All the remaining lines in Listing 12-3 implement the rules that allow the ping domain type access
necessary to perform its function. For example, the interface calls in lines 18 through 27 provide the
necessary network access by using interfaces from the core network (corenetwork) module. Much of
the access is provided via interfaces; this is the expected form of a module implementation so that
access is defined only in one place and interfaces are called elsewhere to use that access. Again, we
can examine the purpose of each of these interfaces by examining their implementation or more
easily by reading through the interface documentation that is generated. As you read through this
listing, you will also notice uses of the target_policy conditional on line 48 to define targeted-only
policy rules.

Now let's look at the interfaces for ping, which will be defined in the netutils interface file
(netutils.if), a partial list of which is shown in Listing 12-4. In addition to defining the interfaces
themselves, the .if file also contains the XML statements that are used to generate documentation.
As you see on line 1 in Listing 12-4, all module interface files must start with a summary statement
that provides a concise statement of the module's purpose. Because ping is part of a larger network
utilities module, we see a statement that summarizes the whole purpose of the module (although in
Listing 12-4 we show only those parts of the module that relate to ping).

Listing 12-4. Partial Listing for netutils (ping) Interface Module File
(netutils.if)

 1 ## <summary>Network analysis utilities</summary>
 2
 3 ########################################
 4 ## <summary>
 5 ## Execute ping in the ping domain.
 6 ## </summary>
 7 ## <param name="domain">
 8 ## The type of the process performing this action.
 9 ## </param>
10 interface('netutils_domtrans_ping','
11    gen_require('
12          type ping_t, ping_exec_t;
13          class process sigchld;
14          class fd use;
15          class fifo_file rw_file_perms;
16    ')
17
18    domain_auto_trans($1,ping_exec_t,ping_t)
19
20    allow $1 ping_t:fd use;
21    allow ping_t $1:fd use;



22    allow ping_t $1:fifo_file rw_file_perms;
23    allow ping_t $1:process sigchld;
24 ')
25
26  ########################################
27  ## <summary>
28  ## Execute ping in the ping domain, and
29  ## allow the specified role the ping domain.
30  ## </summary>
31  ## <param name="domain">
32  ## The type of the process performing this action.
33  ## </param>
34  ## <param name="role">
35  ## The role to be allowed the ping domain.
36  ## </param>
37  ## <param name="terminal">
38  ## The type of the terminal allow the ping domain to use.
39  ## </param>
40  interface('netutils_run_ping','
41     gen_require('
42           type ping_t;
43     ')
44
45     netutils_domtrans_ping($1)
46     role $2 types ping_t;
47     allow ping_t $3:chr_file rw_term_perms;
48  ')
49
50  ########################################
51  ## <summary>
52  ## Conditionally execute ping in the ping domain, and
53  ## allow the specified role the ping domain.
54  ## </summary>
55  ## <param name="domain">
56  ## The type of the process performing this action.
57  ## </param>
58  ## <param name="role">
59  ## The role to be allowed the ping domain.
60  ## </param>
61  ## <param name="terminal">
62  ##  The type of the terminal allow the ping domain to use.
63  ## </param>
64  interface('netutils_run_ping_cond','
65     gen_require('
66           type ping_t;
67           bool user_ping;
68     ')
69
70     role $2 types ping_t;
71
72     if ( user_ping ) {
73           netutils_domtrans_ping($1)



74           allow ping_t $3:chr_file rw_term_perms;
75     }
76  ')
77
78  ########################################
79  ## <summary>
80  ## Execute ping in the caller domain.
81  ## </summary>
82  ## <param name="domain">
83  ## The type of the process performing this action.
84  ## </param>
85  interface('netutils_exec_ping','
86     gen_require('
87         type ping_exec_t;
88    ')
89
90    can_exec($1,ping_exec_t)
91  ')

In lines 11 through 16, 41 and 43, 65 through 68, and 86 through 88, we see the use of another
support macro, gen_require(). This macro is key to supporting the loadable module infrastructure
and eventually for supporting development tools that need module and interface dependency
information. Each module interface file must have a gen_require() macro that lists the policy
identifiers (names of types, attributes, roles, Booleans, and so on) that this interface uses. For types
and attributes, these identifiers must be types and attributes private to the module (because only
private types and attributes may be explicitly named within a module). The gen_require() macro will
generate the appropriate dependency information to support various types of policy builds. This
allows, for example, the ability to link a loadable module without the entire policy source being
available.

The rest of the partial .if file in Listing 12-4 defines four ping-related interfaces in much the same
way we already discussed. All these interfaces are access interfaces using the interface() macro.
The first interface, netutils_domtrans_ping(), which is defined in lines 3 through 24, supplies all the
rules to allow a provided domain type permission to cause a domain transition into the ping domain
type. The two interfaces, netutils_run_ping(), defined in lines 26 through 48, and
netutils_run_ping_cond(), defined in lines 50 through 76, call the netutils_domtrans_ping()
interface but also require a role to ensure that the role is authorized for the ping domain. The latter
of these two interfaces support the use of a conditional expression based on the user_ping Boolean
(lines 72 through 75) much as we discussed for the example policy in Chapter 11.

The final interface, netutils_exec_ping(), defined in lines 78 through 91, simply allows the provided
domain type the ability to execute the ping program without a domain transition. In this case, the
provided domain type must have the necessary network access itself, which is the case of some
system utilities and daemons.

Finally, let's look at the file labeling policy, which we can find in the netutils.fc file. In that file, there
should be a line such as this

/bin/ping.*  --   gen_context(system_u:object_r:ping_exec_t,s0)



This line is similar to ping's file context file we saw in the example policy with one significant
difference: The file context is provided within another support macro, gen_context(). This macro
contains a full security context, including any optional MLS portion. The gen_context() macro
generates security contexts with or without the MLS portion based on the build type. In this way, we
can write a policy with or without the optional MLS features without having to change the contents of
the file or cause irreversible changes to the sources as with the example policy.



12.5. Build Options for Reference Policy

The reference policy was designed to be customizable without having to understand all the details of
the policy. The primary build targets for reference policy are all identical in name and function to the
example policy. For example, the Makefile targets, policy, policy.conf, relabel, and load all
produce the same results as we discussed in Chapter 11 for the example policy.

Two policy build configuration files that are unique to reference policy are the build.conf and the
modules.conf.

12.5.1. The build.conf File

We discussed some of the options controlled by the build.conf earlier in this chapter. The first option
we want to discuss in this file is the policy type. One of the goals of the reference policy is the ability
to create differing types of policies from the same source tree. This build option controls what type of
policy is built. It is specified with the TYPE option in build.conf. As noted throughout this chapter, we
can build either a targeted or a strict policy. For example, if we wanted to build a strict policy, we
would use the following value for this option:

TYPE = strict

For a targeted policy, we would set the option to targeted instead. In addition, we can enable the
optional MLS features in one of two ways, as a typical MLS policy (strict-mls or targeted-mls) or as
the MCS configuration (strict-mcs or targeted-mcs). These six values (strict, targeted, strict-mls,
targeted-mls, strict-mcs, and targeted-mcs) are the only currently supported policy types for
reference policy.

Another option in build.conf is the policy name, which is specified with the NAME option. This is a nice
feature in reference policy that allows us to name the policy something other than its policy type. The
name is used to determine the install directory for the policy in /etc/selinux/. For example, take the
policy name as provided by default from the reference policy project:

NAME = refpolicy

In this case, when we install the policy, the install directory for the policy is
/etc/selinux/refpolicy/. If no value is provided, the policy type name will be used. For example,
assume our build.conf file has these two lines:

TYPE = targeted
NAME =

Our install directory would then be /etc/selinux/targeted/. This is fine if you want to use the



reference policy in place of your default targeted policy. If you are trying to experiment with the
reference policy, however, you do not necessarily want to overwrite your current, system-provided
targeted policy.

Another option of interest is the distribution tunable, DISTRO. As discussed in the sidebar on page 184,
the reference policy supports a distribution-specific tunable for distribution-specific policy variations.
For example, for FC and RHEL systems, this option would currently be set as follows:

DISTRO = redhat

The final build.conf option we want to discuss is whether the policy is a monolithic policy. This option
is controlled by the MONOLITHIC option. If we are building a monolithic policy (that is, one entire kernel
binary policy as is common today), we would set this option as follows:

MONOLITHIC=y

Otherwise, we would set this option like this:

MONOLITHIC=n

An n indicates that we want to support loadable modules and will be building both the base module
and the loadable modules. Which modules are part of the base module, and which are loadable, is
controlled by the modules.conf, which we discuss next.

12.5.2. The modules.conf File

The modules.conf file controls which modules we include in our policy build and in what form. We can
find this file in policy/modules.conf. If the file is not present, you can create it with the make conf
command from the policy root directory. This command creates a modules.conf file with an entry for
all modules in the policy/modules/ directory. If the modules.conf file already exists, make conf
appends any new modules to the files (that is, those not already included in the file) without
changing any settings for the existing modules. Thus, when we add new modules, we run make conf
and then modify the settings for the new modules in modules.conf.

An entry in modules.conf looks like this:

# Layer: admin1
# Module: netutils
#
# Network analysis utilities
#
netutils = module

This is the entry that is generated from the netutils module discussed previously. The comment
lines (proceeded by #) are generated from the module for informational purposes. The layer
comment comes from the name of the directory where the module files are located, the module
name comment comes from the root names of the module files, and the description comment comes



from the module summary description in the top of the module .if file.

The only effective line is the netutils = module line, which tells the policy build tools how to treat this
module during the build process. A module can be set to one of three values. Depending on the type
of build (monolithic or loadable module), these values determine how and if the module is built.
Possible values for a module are as follows:

base For a monolithic policy build, all modules marked as base will be
included in the policy. For loadable module policy build, all modules
marked as base will be included in the base module.

module For a monolithic policy build, all modules marked as module will be
treated the same as base and will be included in the policy. For a
loadable module policy build, all modules marked as module will be
built as loadable modules.

off For both monolithic and loadable module builds, all modules marked
as off will not be built in any fashion.

All modules that are in the policy/module/ directory that are not listed in the modules.conf file, or
which are listed but do not have a value, will not be built in any fashion (as if they were marked as
off).

When creating or updating the modules.conf file with the make conf command, all modules will be
marked as module unless the module is marked as required within the module interface (.if) file. For
example, here is the header for the kernel module .if file. The kernel module is always required:

## <summary>
##    Policy for kernel threads, proc filesystem, and
##    unlabeled processes and objects.
## </summary>
## <required val="true">
##    This module has initial SIDs.
## </required>

The block that starts with <required val="true"> indicates that this module is required along with a
comment explaining why. For all such modules, the default value from modules.conf will be base,
ensuring that the module is always included in a monolithic policy or as part as the base module for a
loadable module policy. Thus, when we generate the modules.conf file, the kernel module block looks
something like this:

# Layer: kernel
# Module: kernel
# Required in base
#
# Policy for kernel threads, proc filesystem, and
# unlabeled processes and objects.
#
kernel = base



As you can see, in addition to setting the default value to base, there is also an extra comment
("Required in base") that notes for future reference that this module should always be base.



12.6. Summary

The reference policy project was started to reengineer the example policy derived from the
original example policy for SELinux. The goals of this reengineering include the inclusion of
modern software engineering design principles to make policy development and maintenance
easier to perform, and to support emerging technology, such as loadable modules and
sophisticated policy development tools.

Layering is a weak design principle of reference policy. The layers organize policy modules in a
manner that are generally reflective of our understanding of how the policy modules relate.

Modularity is a strong design principle of reference policy. Although the example policy had a
form of modularity, it was weakly defined and did not ensure that modules remained loosely
coupled. Reference policy modules hide implementation details from other modules allowing
easier maintenance of the overall policy and distributed policy development (that is, the ability
to develop a policy module without detailed knowledge of other modules).

Two properties of modularity primarily ensure that reference policy modules remain loosely
coupled: encapsulation and abstraction.

Encapsulation ensures that implementation details of a module are only required by the module
itself. This goal is achieved primarily through requiring that type and attribute names always
remain local identifiers that may only be explicitly used by the module that defines them. Other
modules use these types and attributes via well-defined interfaces of the module.

Abstraction ensures that policy module writers can think about policy development logically
rather than focus on all the policy details. This is accomplished via module interfaces. Interfaces
are designed and named to describe what the interface provides and not how it does it. The
"how" can change over time without impacting the "what."

A module consists of three files: the private policy file (.te), the external interface file (.if),
and the labeling policy file (.fc). All three files must be present for each defined module even if
empty.

A reference policy module may have two types of interfaces: access and template. Access
interfaces are by far the most common. These interfaces provide access to the module's private
types and attributes. Template interfaces are less common and are used when we need to
manage derived types between two modules.

Reference policy introduces two configuration files that provide most of the policy build options
we need to control. The build.conf file controls global policy build options, such as policy type
and install location. The modules.conf file controls which policy modules are built and in what
form.

Currently, reference policy can build six types of policies from the same source tree: strict,
targeted, strict-mls, targeted-mls, strict-mcs, and targeted-mcs.



Two types of builds are supported by the reference policy. A monolithic build creates a single
kernel binary policy. Monolithic policies are the only type of policy in general use at the time of
this writing and are the type of policy we mostly discuss in this book. A loadable module build
creates a base module and a number of loadable modules that make use of the new loadable
module infrastructure. We expect loadable modules to become more common going forward.



Exercises

1. Describe some of the key benefits of the reference policy over the example policy.

2. What is the primary goal of encapsulation within reference policy and how is it generally
achieved?

3. What is the difference between a module's .if and .te files? How are they similar?

4. Which of the three kinds of module files are required or optional for a reference policy
module?

5. Explain when you might need to use a template interface rather than the much more
common access interface.

6. Assume the following is a modules.conf file. Describe how each module is built for both a
monolithic policy and a loadable module policy.

          kernel = base
          files = base
          rpm = module
          tftp = off
          rpc = module
          corenetwork = base
          init = module
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An SELinux system looks and feels like any other Linux system in many ways. Indeed, Red Hat
Enterprise Linux (RHEL) is an SELinux system whether you know it or not. However, with the
enhanced security, "something" can break or not work for more reasons than before. Fixing problems
may require additional administration procedures, and normal operations may now require additional
steps. In this chapter, we discuss the way in which SELinux affects a Linux administrator and how to
accomplish the most common important tasks.



13.1. SELinux Configuration and Policy Management Files

SELinux includes files that allow the management of SELinux specific additions, including the policy.
This includes setting which policy to use when multiple policies are installed, label management files,
and configuration files for SELinux applications and utilities.

Note

The files we describe in this chapter are based on a Fedora Core 4 (FC4) system. There are
subtle differences with a RHEL4 and more significant improvements in an FC5 system. We
highlight these differences as appropriate throughout this chapter.

13.1.1. The SELinux Configuration File (/etc/selinux/config)

The SELinux configuration file, /etc/selinux/config, controls which policy will be loaded during the
next system boot, and in what mode the system will run. We can determine the current SELinux
system state using the sestatus command. Listing 13-1 shows an example of the config file.

Listing 13-1. Listing of /etc/selinux/conf File

1  # This file controls the state of SELinux on the system.
2  # SELINUX= can take one of these three values:
3  #       enforcing - SELinux security policy is enforced.
4  #       permissive - SELinux prints warnings instead of
                        enforcing.
5  #       disabled - SELinux is fully disabled.
6  SELINUX=enforcing
7  # SELINUXTYPE= type of policy in use. Possible values are:
8  #        targeted - Only targeted network daemons are
                       protected.
9  #        strict - Full SELinux protection.
10 SELINUXTYPE=strict

This file controls two configuration settings: the SELinux mode and the active policy. The SELinux
mode (determined by the SELINUX option on line 6) can be set to enforcing, permissive, or disabled.
In enforcing mode, the policy is fully enforced. This is the primary mode of SELinux and should be
used in all operational systems that require the enhanced security of SELinux. In permissive mode,
the policy rules are not enforced. Instead, denials are audited, and otherwise SELinux generally does



not impact the security of the system. This mode is useful for debugging and testing a policy.

In disabled mode, the SELinux kernel mechanism is completely turned off. A system may only be put
into disabled mode when booting before the policy is loaded. This mode differs from permissive mode
which has the SELinux kernel features operating but not denying any access (just auditing). In
disabled mode, SELinux will not perform any action. This mode is only necessary in extreme
circumstances (for example, when a policy error prevents you from even logging in, which can occur
even in permissive mode) or if we truly do not want SELinux to operate.

Warning

Be careful about switching between enforcing and permissive modes, or disabling and
enabling SELinux (something you might commonly do in a development or test machine).
Quite often, you can cause file labeling inconsistencies when you go back to enforcing
mode. (Not to mention that you will have turned off your system's main security
enhancement feature!) We discuss how to fix file labeling problems later in this chapter.

The mode set in the SELinux configuration file is used by init to configure SELinux before it loads the
initial policy as part of the boot process.

The SELINUXTYPE option in the SELinux configuration file tells init which policy to load during system
initialization. The string used for the setting must match the directory name where the binary version
of the policy you want to use is stored. For example, throughout this book, we use a strict policy as
an example. So, we set the option as SELINUXTYPE=strict and make sure that the policy we want the
kernel to use is in /etc/selinux/strict/policy/. If we had created our own custom policy, called
custom_policy, we would set the option as SELINUXTYPE=custom_policy and make sure that our
compiled policy is in /etc/selinux/custom_policy/policy/.

FC and RHEL systems provide a graphical tool (system-config-securitylevel) that enables us to set
the options in the SELinux configuration file without having to edit the file directly (see Figure 13-1).
The first two check boxes in this tool set the SELINUX option for us. The Policy Type drop-down box
allows us to choose an active policy from the installed policies.

Figure 13-1. Red Hat security level configuration tool

[View full size image]



13.1.2. The Policy Directories

As of FC3 (and RHEL4), every policy installed on a system has its own subdirectory under the
/etc/selinux/ directory. The subdirectory name corresponds to the name of the policy (for example,
strict, targeted, refpolicy, and so on) and is used in the SELinux configuration file to tell the kernel
which policy to load on boot. All path references in this section are relative to a policy directory path
(that is, /etc/selinux/[policy]/). Here is a sample directory listing for /etc/selinux/ from an FC4
machine:

# ls -lZ /etc/selinux
-rw-r--r--  root   root  system_u:object_r:selinux_config_t config
drwxr-xr-x  root   root  system_u:object_r:selinux_config_t strict
drwxr-xr-x  root   root  system_u:object_r:selinux_config_t targeted

As you can see, two policy directories are installed on our system: strict and targeted. Notice that
the directory and the policy subdirectories are labeled with the type selinux_config_t. This is the
type traditionally applied to binary policies and related support files. You can use apol to examine the
rules for this type and get an idea of what programs and utilities may change policy files.



Policy Directories in FC5

The layout of the policy subdirectories has changed significantly in FC5 with the
introduction of the loadable policy module infrastructure (see Chapter 3, "Architecture").
The primary change is the introduction of libraries and tools to manage many of the
policy files in a standardize way. This change make the installation and removal of
loadable policy modules better and eases the management of many aspects of the policy.
In general, it is not necessary to directly edit files in the policy subdirectories on an FC5
or other system that incorporates the loadable modules enhancements.

The commands semodule and semanage manage many aspects of the policy. The semodule
command manages the installation, upgrading, and removing of loadable policy modules.
It works on loadable policy packages, which include a loadable policy module and file
context information. The semanage tool manages the addition, modification, and removal
of users, roles, file contexts, multilevel security / multicategory security (MLS/MCS)
translations, port labels, and interface labels. More information on these tools is available
in their respective man pages.

Each policy subdirectory must follow a convention in the files they contain and how the files are
labeled. This convention is used by various system utilities to help manage the policy. Generally, any
well designed policy source tree will install the policy files correctly (as will properly constructed
package installation scripts). Following is a listing of our strict policy directory, which is typical of
any installed policy:

# ls -lZ /etc/selinux/strict
-rw-------  root root system_u:object_r:selinux_config_t  booleans
-rw-------  root root root:object_r:selinux_config_t      booleans.local
drwxr-xr-x  root root system_u:object_r:default_context_t contexts
drwxr-xr-x  root root system_u:object_r:policy_config_t   policy
drwx------  root root system_u:object_r:policy_src_t      src
drwxr-xr-x  root root system_u:object_r:selinux_config_t  users

The src/ directory is not required for a running system. It optionally contains the installed policy
source tree (either the example policy or the reference policy source tree we discussed in Chapters
11, "Original Example Policy," and 12, "Reference Policy"). The actual monolithic binary policy file is
stored in the .policy/ directory, in a file named policy.[ver], where [ver] is the version of the
policy binary (for example, policy.19). This is the file that is loaded into the kernel during system
boot.

We discuss the remaining files and directories in the following sections.

13.1.2.1. Installed Booleans Files

Chapter 9, "Conditional Policies," discussed how Booleans are managed in an SELinux system. An
SELinux policy defines default values for all Booleans. The booleans file provides the distribution the



ability to set persistent changes to these default values. The values in booleans override the policy
defaults when the policy is loaded or the system is booted. The booleans.local file provides
additional persistent values that override both the policy default values and the distribution persistent
values. You should review Chapter 9 for how to set and control Boolean values. There is also a
manual page, man 8 booleans, that provides a quick summary on the use of Booleans for FC and
RHEL systems.

In FC5, where the booleans file is no longer present but the booleans.local file remains for local
changes (although changes are made through semanage/libsemanage and not from directly changing
the file), distribution defaults are now managed in the policy itself. Red Hat sets their defaults in the
policy sources, thereby removing the need to have a separate distribution file to override the policy
defaults.

Note

In RHEL4 systems, the booleans.local file does not exist. Rather, the only ability to
override policy default values (other than changing the policy itself) is the booleans file in
the policy directory. The problem with a single file is that Red Hat uses this file to set
distribution defaults, and utilities such as rpm may overwrite it destroying any local
changes. In FC4, the booleans.local file was added to allow local changes that will not be
effected by package managers.

In Fedora Core 5, where the booleans file is no longer present but the booleans.local file
remains for local changes (though changes are made through semanage/libsemanage and
not from directly changing the file). Distribution defaults are now managed in the policy
itself; Red Hat sets their defaults in the policy sources thereby removing the need to have a
separate distribution file to override the policy defaults.

The system-config-securitylevel utility (see Figure 13-1) provides a graphical interface to change
the local persistent values (that is, the booleans.local file). The items in the Modify SELinux Policy
list box of this tool correspond to defined policy Booleans. The Boolean values can also be changed
with the command-line tool setsebool and viewed with the setatus and getsebool commands (see
Appendix D, "SELinux Commands and Utilities").

13.1.2.2. Application and File Security Contexts

The contexts/ subdirectory, in an installed policy directory, contains various files that help system
services and utilities manage file security context labeling. They also contain default security contexts
for login processes. In general, these files would only be changed by a policy developer, but
occasionally an administrator may have need to modify one of them. Here we summarize the
purpose of some of these files:



contexts/customizable_types Contains a list of types that by convention will not be relabeled when
using the restorecon or setfiles utilities to fix file labeling issues
(see later in this chapter). This feature is useful to help protect some
file labels that change in intended ways from their installed defaults.
Use the SELinux application programming interface (API) to check
on whether or not a context is customizable is
is_context_customizable(3).

contexts/default_contexts During initial login, a user may be authorized for more than one
role/type pair for their login session (for example, an administrator
who can log in as both an unprivileged user and a privileged user).
This file provides the means by which a login process (login, sshd,
and so on) determines the default role/type pair to use for initial
login.

Each line in this file contains a role/type pair representing the security context of the login process
followed by one or more role/type pairs that represent the default security context for the user's
initial login process. For example, here are two typical lines for an SELinux system:

system_r:local_login_t  staff_r:staff_t user_r:user_t sysadm_r:sysadm_t
system_r:sshd_t  user_r:user_t sysadm_r:sysadm_t

The first line represents the local login process (login via its type login_t), and the second a Secure
Shell login (ssh via its type sshd_t). The login process is determined by the first role/type pair on a
line. For example, the assumption in this file is that the login process (for local logins) runs with a
security context that has system_r as its role and local_login_t as its type. In that case, the
subsequent list of role/type pairs on the same line will be used as the default security contexts
(minus the user identifier) for a user login.

The first role/type pair in the list of default security context that is authorized for the user in the
policy is used as the default security context. This file does not authorize a user for a role or a type;
only the policy may do that (see Chapter 6, "Roles and Users"). So, for example, in the local login
case for our example default_contexts file, if administrators log in locally (administrators are
generally users authorized for both staff_r:staff_t and sysadm_r:sysadm_t), their default security
context will be staff_r:staff_t even though they are authorized for sysadm_r:system_t. An
administrator could later change their security context (for example, using the newrole command)
because they are authorized for both, but the default is the "staff" set of privileges. Notice for an ssh
login, the default is the "sysadm" set of privileges.

Note that these defaults may be overridden for a specific user if there is a contexts/users/[USER] file
(see the following).

[Pages 304 - 305]

contexts/users/[USER] This file is exactly the same format as the default_contexts file
except that it is for a particular user. If a file exists for a given
user, default role/type pairs for that user are determined first
from this file and then from the default_contexts file.

contexts/failsafe_context If a login process cannot determine a default security context



for a user, the user will not be able to log in to the system. This
is most likely to be the case if the default_contexts file is
corrupted or changed. This file provides a reasonable safe
failsafe security context that allows at least the administrator to
log in. It provides the last default security context that a login
process attempts before failing the login attempt. It typically
has a line like this:

sysadm_r:sysadm_t

This would at least allow administrator users to login (for
example, to fix the corrupted default_contexts file).

contexts/default_type This file contains a list of role/type pairs that are used by
utilities, such as newrole. For example, if we use newrole to
change our role but did not specify a type, the utility would
consult this file to determine the default type for the role. For
example, if we run the command newrole -r sysadm_r, and this
file had a line such as sysadm_r:sysadm_t, the command would
attempt to use sysadm_t as our default user domain type.

contexts/files/file_contexts This file contains the file-related security context labeling
information built as part of the policy build process and used to
initialize the security context for file-related objects. It is
installed here to help utilities that fix file label problems (see
below).

contexts/files/file_
contexts.home_dirs

This file is automatically generated using the
/usr/sbin/genhomedircon script. Its format is the same as the
file_contexts file, but it is specifically used to label user home
directories.

contexts/files/homedir_template This file contains a template that the /usr/sbin/genhomedircon
script uses to generate blocks of label specifications in the
file_contexts.home_dirs file discussed previously.

contexts/files/media This file contains security contexts for storage devices mounted
under the /media/ directory. It is used by the libselinux
matchmediacon(3) API.

contexts/initrc_context This file contains the role/type pair that is used for the security
context for run_init (that is, the program that an administrator
runs to start system services in the same manner that init
would) so that it can execute a script in /etc/rc.d/ in a security
context the same as if the script were started by init. This
role/type pair is typically the same as init uses to start these
services.

contexts/removable_context This file contains the default security context for removable
media devices. This security context is used for devices not
addressed by the media context file.



13.1.2.3. SELinux User Definitions

The two files in the user/ directory were added to support better user management in an SELinux
system without having to change the policy. Both files have the same format. Specifically, they list
policy user statements as discussed in Chapter 6.

users/system.users This file provides the distribution provider with the ability to change
role associations for users explicitly defined within the policy sources.
Package managers will overwrite this file, so no local changes should
be made in it. We should use the local.user files for locally defined
users.

users/local.users This file is identical in function to system.users except that it will not
be changed by the distributions. Thus, we can define local users in
this file that will be added to the policy.

The load_policy utility reads these files and changes the binary policy before loading it into the
kernel. (The change is only to the in-memory version of the policy; the on-disk binary policy does not
change.) In general, for either file, if the user already exists in the policy file (that is, hard-coded in
the original policy sources), the role associations are changed. Otherwise, the user is added to the
policy before it is loaded into the kernel.

13.1.2.4. The SELinux Filesystem

The SELinux pseudo filesystem provides the primary control interface between the SELinux kernel-
space Linux Security Module (LSM) and userspace programs (see Figure 3-2 in Chapter 3). This
filesystem is usually mounted on /selinux/. Many SELinux utilities and APIs (provided by the
libselinux library) use the SELinux filesystem to access the LSM module. In this section, we examine
some of the files that may be of interest to an administrator. Most of the files in this filesystem exist
to support APIs in libselinux and are not discussed here. The recommended way to use these files is
through the more stable libselinux APIs and the tools that use that library, and not directly.



booleans/ This directory contains a file for every Boolean defined in the policy.
If the file is read, the current value of the Boolean and a pending
value of the Boolean are returned. The pending value is the value the
Boolean will be changed to when the Boolean values are committed
(see commit_pending_booleans). The files have the same name as the
Boolean names defined in the policy (see Chapter 9).

commit_pending_bools This file signals the kernel-space security server that new policy
Boolean values are ready to be activated. This feature allows multiple
policy Boolean values to be changed in an atomic fashion (see
Chapter 9).

disable This file is the interface init uses to disable SELinux during
initialization (see the SELinux configuration file above). When the
initial SELinux policy is loaded or SELinux is disabled, this interface is
no longer effective. Therefore, changes to the disable state always
require a reboot. In general, the only way to enable/disable an
SELinux system is to change /etc/selinux/config as discussed
previously (or use the system-config-securitylevel shown in Figure
13-1) and reboot the system. Only init can use the direct interface
via this file.

enforce This file is the interface used to turn enforcing mode on and off. This
is the interface that init uses during boot to set the mode to
enforcing mode based on the settings in /etc/selinux/config. We
can also directly use this interface to change mode by writing a 1
(enforcing mode) or 0 (permissive mode) to this file. The change in
mode is effective immediately. The setenforce command does
exactly this for us and is an easier way to change modes.

It is also possible (and often desirable) to write a policy that does not
allow any domain permission to toggle the mode to permissive from
enforcing mode.

load This file is the interface used by the load_policy program to load a
new binary policy.

mls This file is used by the kernel to indicate whether or not MLS is
activated on the system (see Chapter 8, "Multilevel Security").

policyvers This file returns the maximum version of the policy that the kernel
supports.





13.2. Impact of SELinux on System Administration

As with any Linux system, an administrator needs to understand numerous functions to manage an
SELinux system. For the most part, SELinux is managed like an ordinary non-SELinux system.
However, SELinux introduces additional requirements for several typical administrator actions. In this
section, we discuss some of the areas of administration that commonly cause problems for
administrators new to SELinux.

13.2.1. Managing Users

Adding, modifying, and deleting users has always been a challenge on SELinux systems. If not done
correctly, it may appear that a user was added, but the user will not be able to log in (for example,
due to problems with the default_contexts file). The generic SELinux user (user_u ) resolved many
of the user management difficulties for SELinux systems that do not require granular control over all
Linux users. For example, when a user is added in FC4, it is automatically mapped to user_u simply
because the new user was not defined in the policy. See Chapter 6 for more on user_u .

Another challenge with users is how to label files in a user's home directory, which raises several
issues. One challenge is how to generalize labeling for different types of user domain types (for
example, sysadm_t vs. user_t ). Another is how to determine the proper labels for a user when they
are added to an existing system. If a user's home directory and files are not initially labeled correctly
the user may encounter a variety of problems, such as not being able to log in or not being allowed
to write files in their home directory. Fortunately we have made significant progress in recent years in
addressing user management in SELinux with the ./contexts/files/file_contexts.home_dirs file
discussed earlier.

13.2.1.1. Adding an Ordinary Unprivileged User

With the inclusion of the generic user, user_u , it is fairly straightforward to add a user to an SELinux
system by just running useradd . For example, below we show the process of adding a user jimmy on
a typical FC4 system:

# useradd jimmy
# ssh jimmy@localhost
jimmy@localhost password:
$ id
uid=502(jimmy) gid=502(jimmy) groups=502(jimmy) context=user_u:user_r:user_t

Notice that the user identifier in the security context is the generic user user_u . That is because we
did not add jimmy as a specific SELinux user, so FC4 uses the generic user by default.

The generic user is adequate for most systems that do not need to define a large number of user
roles. Most of the general purpose policies today have just a couple of roles (system, administrator,



and user) and all new users are assigned to the user role (user_t domain type and user_r role) via
the generic user as with jimmy . To add an ordinary unprivileged user to an SELinux system where
user_u is defined, we do not have to do anything beyond the normal useradd command.

User Management in FC5

In FC5, user management is improved by the introduction of the semanage tool. The semanage tool
manages both SELinux users, their role authorizations, and the mapping of Linux users to SELinux
users. (See Chapter 6 for more information on user mapping.) For instance, consider the following
example:

[View full width]# semanage user -a -R "sysadm_r user_r" staff_u
# semanage user -l

                  MLS/        MLS/
SELinux User      MCS Level   MCS Range               SELinux Roles
root              s0          SystemLow-SystemHigh    sysadm_r user_r
system_r
staff_u           s0          s0                      sysadm_r user_r
system_u          s0          SystemLow-SystemHigh    system_r
user_u            s0          SystemLow-SystemHigh    sysadm_r user_r
system_r
# semanage login -a -s staff_u joe
# semanage login -l
Login Name                 SELinux User              MLS/MCS Range
__default__                user_u                    s0
joe                        staff_u                   s0
root                       root                     
 SystemLow-SystemHigh

In this example, we add a new SELinux user named staff_u that is authorized for the roles sysadm_r
and user_r , list all the SELinux users, add a new user mapping for the user joe to the SELinux user
staff_u , and list all the user mappings.

Notice that because FC5 uses the optional MLS features by default (to implement the MCS policy),
MLS ranges are shown for users.

13.2.1.2. Adding a Privileged User Account

For administrators, a root user is typically defined in the SELinux policy that corresponds to the root
user account. The policy assigns this user a role (sysadm_r ) and user domain (sysadm_t ) that has
sufficient privilege to manage a system. Although root in SELinux is not all-powerful as in a standard
Linux system, it does have the authority to run all the programs that have the various privileges
required. Users authorized to use the root user account (and its associated privileged user domain
types) are generally given a different unprivileged user domain type (staff_t ). This user domain
type is exactly like the unprivileged domain type of ordinary users (user_t ) except that it may
transition into the privileged user domain type (sysadm_t ).



To add a privileged user, we run the useradd command as we did with an ordinary user account.
However, we also need to edit the active policy's local.users file discussed previously. In this file, we
define the user to the policy. For example, if we want to create a Linux user called "admin" that has
administrator privileges, we would do the following:

# useradd admin                                    # create ordinary user
# vi /etc/selinux/strict/users/local.users         # add admin as privileged
# load_policy /etc/selinux/strict/policy/policy.19 # reload policy
# genhomedircon                                    # fix homedir template
# restorecon -R /home/admin                        # fix admin's homedir

We used the same useradd command to create the account and home directory. However, this time
we need to tell SELinux about the new user so that it does not treat it as a generic user. We do this
by editing the local.users file and adding the following line:

user admin roles { staff_r sysadm_r };

This line lets the SELinux policy know of the user and defines the authorized roles for the user. To
make this change effective, we need to run load_policy to reload the policy into the kernel. At this
point, the user is defined in both the system and the SELinux policy. However, the user home
directories are still labeled as if admin were a generic user. (This is the behavior of useradd .) So, next
we need to run the genhomedircon utility that updates the home directory file security context file
(./contexts/files/file_contexts.home_dirs ) with the new user. We then use the restorecon
program to update the new user's home directory based on its current roles.

At this point, the user account is now created and authorized for both the unprivileged administrator
role (staff_r ) and the privileged administrator role (sysadm_r ). The behavior of most login
processes is such that the default security context for a user authorized for both roles is staff_r so
that an administrator logs in as an unprivileged user by default. For example, let's log in as our new
administrator account:

# ssh admin@localhost
admin@localhost's password:
$ id
uid=506(admin) gid=506(admin) groups=506(admin) context=admin:staff_r:staff_t

Notice that our role and user domain type are staff_r and staff_t , respectively. As we said, these
are the unprivileged role and type for administrative users. Choosing staff over sysadm as the
default login role/type is a function of the default context for sshd as we discussed earlier. Processes
with the staff_t domain type have essentially no more privilege than any other ordinary user, other
than it is allowed to transition to the privileged domain type sysadm_t . For example, to perform
administrator functions we could then do the following:

$ su
Password:
Your default context is root:sysadm_r:sysadm_t.
Do you want to choose a different one? [n]
# id
uid=0(root) gid=0(root)



groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel)
context=root:sysadm_r:sysadm_t

The su program (which also acts like a login program) has its default context set up such that a user
running with the staff role/type will default to the sysadm role/type. Notice that the su program also
asks whether you want to provide a security context other than the defined default. You always have
the option of trying something other than the defined default (if the policy permits it).

Note

In FC5, su does not change the security context. Instead, users must use the newrole
command. For example, the command newrole -r sysadm_r -t sysadm_t makes the
equivalent change to the security context as the FC4/RHEL 4 example above.

Remember that the default contexts for the various login programs define only defaults; they do not
allow the necessary access. Only the policy may do that, as we discuss in Part II of this book.

13.2.1.3. Changing a User Role

Changing the role of an existing user is similar to adding a new administrator role. We just need to
skip the useradd step because the user already exists. For example, to change the admin user we
just defined back to an ordinary user we do the following:

# vi /etc/selinux/strict/users/local.users
# load_policy /etc/selinux/strict/policy/policy.19
# genhomedircon
# restorecon -R /home/admin
# ssh admin@localhost
admin@localhost's password:
id
uid=506(admin) gid=506(admin) groups=506(admin) context=user_u:user_r:user_t

To remove the administrator privileges, we remove the user from the local.users file, reload the
policy, and fix the user home directory security contexts. As you can see, when we log in as this user
now, our role/type is user and our user is now the generic user user_u .

13.2.2. Understanding Audit Messages

In Chapter 5 , "Type Enforcement," we discuss the policy rules that control the generation of audit
messages from SELinux. Here we discuss the format of the messages generated from these policy
statements and how to examine and manage the audit messages on a production system.

On systems that utilize the kernel audit framework (including FC4 and 5), SELinux audit messages
are stored in both the system log (that is, syslog) files and the audit daemon log files. By default, the
audit daemon log is stored in /var/log/audit/audit.log , and the system log file is stored in



/var/log/messages . The audit daemon log contains all the audit messages created by the audit
framework including access vector cache (AVC) messages. AVC messages are the audit messages
generated by SELinux as a result of access denials and auditallow rules. The system log contains
more general SELinux audit messages.

Note

The original version and first update of RHEL4 did not use the audit framework. This means
that all SELinux audit message should be in the system log, typically /var/log/messages .
Beginning with RHEL4 update 2, the audit framework is used and it should work just like
FC4. Some SELinux messages are still sent to the system log because they are generated
as kernel messages rather than audit messages (for example, policy load messages), and
any SELinux audit messages generated before the audit daemon is started are also stored
in the system log. In FC5, the audit daemon is optional, meaning that SELinux messages
will appear in either system log or the audit log depending of the configuration of the
system.

13.2.2.1. General SELinux Audit Messages

SELinux generates audit messages at system initialization, policy load, and when Boolean states are
changed. The policy does not control the generation of these messages; they are hard-coded into
SELinux. All the general SELinux audit messages are currently stored in the system audit logs.

At system initialization, SELinux generates audit messages that give information about the
configuration of the SELinux LSM module. For example, here are the first audit messages from
SELinux after booting the system:

 1 Jul 22 11:44:25 milton kernel: Security Framework v1.0.0 initialized
 2 Jul 22 11:44:25 milton kernel: SELinux:  Initializing.
 3 Jul 22 11:44:25 milton kernel: SELinux:  Starting in permissive mode
 4 Jul 22 11:44:25 milton kernel: selinux_register_security:  Registering
                   secondary module capability
 5 Jul 22 11:44:25 milton kernel: Capability LSM initialized as secondary

The initialization of the LSM framework generates line 1, and the subsequent initialization of SELinux
generates line 2. This system was booted in permissive mode, which is reflected on line 3. Lines 4
and 5 show that the capability LSM module, which implements the standard Linux capability
semantics, was registered as a secondary LSM module to SELinux.

Later in system initialization, the policy is loaded for the first time, generating audit messages similar
to the following example:

[View full width] 1 Jul 22 11:44:26 milton kernel: security:  3 users, 6 roles, 1341 types, 62 bools
 2 Jul 22 11:44:26 milton kernel: security:  55 classes, 345260 rules
 3 Jul 22 11:44:26 milton kernel: SELinux:  Completing initialization.
 4 Jul 22 11:44:26 milton kernel: SELinux:  Setting up existing superblocks.
 5 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev dm-0, type ext3), uses xattr



 6 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev tmpfs, type tmpfs), uses
 transition SIDs
 7  Jul 22 11:44:26 milton kernel: SELinux: initialized (dev selinuxfs, type selinuxfs),
 uses genfs_contexts
 8 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev mqueue, type mqueue), not
 configured for labeling
 9 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev hugetlbfs, type hugetlbfs),
 not configured for labeling
10 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev devpts, type devpts), uses
 transition SIDs
11 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev eventpollfs, type eventpollfs)
, uses genfs_contexts
12 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev tmpfs, type tmpfs), uses
 transition SIDs
13 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev futexfs, type futexfs), uses
 genfs_contexts
14 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev pipefs, type pipefs), uses
 task SIDs
15 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev sockfs, type sockfs), uses
 task SIDs
16 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev proc, type proc), uses 
genfs_contexts
17 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev bdev, type bdev), uses
 genfs_contexts
18 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev rootfs, type rootfs), uses
 genfs_contexts
19 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev sysfs, type sysfs), uses
 genfs_contexts
20 Jul 22 11:44:26 milton kernel: SELinux: initialized (dev usbfs, type usbfs), uses
 genfs_contexts

The first two lines of this example show the audit message generated every time a policy is loaded.
As you can see, this message shows statistics about the policy loaded. This example policy has 3
users, 6 roles, 1,341 types, 62 Booleans, 55 object classes, and 345,260 rules. Recall from Chapter 5
that rules are expanded in the kernel binary policy format (for policies before version 20). The
number of rules shown in these audit messages are for the expanded rule format, which will be
significantly higher than the number of rules present in the policy source files.

This example also shows the audit messages generated at the first policy load. Lines 3 and 4 show
the completion of SELinux initialization, including the initialization of SELinux support for filesystem
objects that were mounted before the first policy load. Lines 5 through 20 show the initialization of
each filesystem object and the associated labeling behavior.

The final general SELinux audit message is generated when the state of Booleans is committed. For
example, consider the following two audit messages:

Dec  2 14:07:41 book kernel: security: committed booleans { allow_write_xshm:1,
mozilla_read_content:0, mail_read_content:0, cdrecord_read_content:0,
allow_ptrace:0, read_untrusted_content:0, write_untrusted_content:0,
user_dmesg:0, use_nfs_home_dirs:0, allow_execmem:0, allow_execstack:0,
allow_execmod:0, use_samba_home_dirs:0, user_tcp_server:0, allow_ypbind:0,



allow_kerberos:1, user_rw_usb:1, user_net_control:0, user_direct_mouse:0,
user_rw_noexattrfile:1, read_default_t:1, staff_read_sysadm_file:1,
allow_httpd_user_script_anon_write:0, allow_httpd_staff_script_anon_write:0,
user_ttyfile_stat:0, httpd_unified:0, httpd_builtin_scripting:1,
httpd_enable_cgi:1, httpd_enable_homedirs:1, httpd_ssi_exec:1, httpd_tty_comm:0,
httpd_can_network_connect:0, allow_httpd_sys_script_anon_write:0,
allow_httpd_anon_write:0, httpd_suexec_disable_trans:0, comsat_disable_trans:0,
cron_can_relabel:0, cupsd_lpd_disable_trans:0, cvs_disable_trans:0,
dbskkd_disable_trans:0, disable_evolution_trans:0, ftpd_is_daemon:1, ftp_home_di
Dec  2 14:07:41 book kernel: :1, allow_ftpd_anon_write:0, disable_games_trans:0,
inetd_child_disable_trans:0, allow_java_execstack:0, ktalkd_disable_trans:0,
disable_mozilla_trans:0, allow_mplayer_execstack:0, allow_user_mysql_connect:0,
named_write_master_zones:0, secure_mode:0, user_ping:0,
allow_user_postgresql_connect:0, pppd_for_user:0, pppd_can_insmod:0,
rlogind_disable_trans:0, nfs_export_all_rw:0, nfs_export_all_ro:0,
allow_gssd_read_tmp:1, rsync_disable_trans:0, allow_rsync_anon_write:0,
allow_smbd_anon_write:0, samba_enable_home_dirs:0,
allow_saslauthd_read_shadow:0, spamassasin_can_network:0, squid_connect_any:0,
ssh_sysadm_login:1, allow_ssh_keysign:0, run_ssh_inetd:0,
stunnel_disable_trans:0, stunnel_is_daemon:0, swat_disable_trans:0,
telnetd_disable_trans:0, disable_thunderbird_trans:0, uucpd_disable_trans:0,
xdm_sysadm_login:0 }

Boolean commit messages show the current state of all Booleans in the current policy. As the
preceding example shows, this can result in long audit messages that are split into two separate
messages by the audit framework.

13.2.2.2. AVC Messages

AVC messages are the audit messages generated as a result of access denials that were not
suppressed by dontaudit messages or permitted access that matches an auditallow rule. These
messages contain valuable information that can be used for system monitoring, administration, and
policy development. Chapter 14 , "Writing Policy Modules," illustrates how these messages are used
as part of policy development.

AVC messages are stored in the audit daemon log. The following is a representative example of an
AVC message:

type=AVC msg=audit(1135098961.471:1770): avc:  denied  { read } for  pid=19850
comm="cat" name="sysadm_tmp_file" dev=dm-0 ino=67482
scontext=kmacmillan:staff_r:staff_t tcontext=kmacmillan:object_r:sysadm_tmp_t
tclass=file

This AVC message shows that a process with the security context kmacmillan:staff_r:staff_t was
denied read access to a file with the security context of object_r:sysadm_tmp_t . The process was
executing the cat program on the file /tmp/sysadm_tmp_file .

As you can see, almost all the fields in AVC messages are in the form of name=value. For example, in
the field pid=19850 , the name of the field is pid , and the value, which is formatted according to the



information in the field, is 19850 .

To understand the AVC messages, let's examine each of the fields. All AVC messages have the
following six fields:

type

Messages generated by the audit daemon can be one of several types; the type of a message is
identified by a prefix consisting of type= and the message type. The prefix in this message, AVC ,
identifies the message as an AVC message. Other message types (which are not SELinux specific)
include USER_AUTH , LOGIN , SYSCALL , and PATH .

msg

The audit framework prepends a message header to all audit messages that includes a timestamp
and serial number separated by colon. The timestamp, 1135098961.471 in this message, is the
number of seconds and nanoseconds since the Epoch (the standard form for time on UNIX systems).
The serial number, 1770 in this message, is used to identify multiple, related audit messages
generated by the same event. For example, a single event might generate both a system call and
AVC audit message; both of these messages would have the same serial number.

avc

This field, which is the only exception to the name/value format, identifies whether the audit message
was generated from an allowed or denied access, and the permissions that were allowed or denied.
There can be one or more permissions, all from a single object class, which is identified in a separate
field. The keyword denied indicates this message is from an access denial. Allowed access is denoted
by granted .

scontext

The security context of the source, or subject.

tcontext

The security context of the target, or object.

tclass

The object class of the target, or object. The allowed or denied permissions are from the access
vector defined for this object class (see Chapter 4 , "Object Classes and Permissions").

The rest of the fields in an AVC message provide additional detail about the access that was allowed
or denied. The details are often object-class specific. For example, audit messages from file-related
object classes often include the inode number of the object, and audit messages from network-
related objects often include an IP address or port number. The preceding example has the following
fields, which are typical for file-related object classes:

pid



The identifier of the process that attempted the access. This field is most useful to distinguish
between multiple invocations of the same application or for servers that include multiple, long-
running processes (for example, apache ).

comm

The name of the executable file associated with the process. This field only includes the name of the
file without a full path specification.

dev and ino

The device (dev ) and inode number (ino ) of the file-related object associated with the target.
Together these can be used to identify the object if a full path is not available in the audit message.

name

The name of the file-related object. This field includes only the name of the file-related object without
a full path.

Note

Under the new Linux audit framework, every AVC message is followed by a SYSCALL
message with the same audit event ID. The SYSCALL message has the correct and full exe
and path fields (corresponding to the comm and name fields, respectively) for the associated
AVC message. This was done to supply the information that is not available at the time the
AVC message is generated.

AVC messages generated as a result of allowed access are similar. Consider the following example:

type=AVC msg=audit(1135098723.344:1742): avc:  granted  { load_policy } for
pid=19618 comm="load_policy" scontext=root:sysadm_r:load_policy_t
tcontext=system_u:object_r:security_t tclass=security

This example AVC message shows the successful loading of a policy. The auditallow rule that caused
the generation of this AVC message is commonly included in policies because of the importance of
loading a policy.

13.2.2.3. Using Seaudit to View Audit Logs

Seaudit , a tool included with the Setools package along with apol , parses and displays SELinux
audit messages. Figure 13-2 shows a typical seaudit session.

Figure 13-2. A typical seaudit session



[View full size image]

This tool parses the log file and displays a list of all the messages. Sixteen customizable fields may be
displayed for each message. The Modify view button allows you to create custom filters so that only
"interesting" data displays. You may save the view as a report.

13.2.3. Fixing Problems: File-Related Object Labeling

During normal system use, file-related objects should not need labeling or relabeling. All of the files
that are part of the operating system should be given a correct initial security context during
installation, and the policy rules relating to labeling ensure that newly created files have the correct
security context. However, during policy development, system setup, and system administration, files
may need to be relabeled.

Warning

Relabeling objects has security risks, including potential race conditions, inconsistent access
control being applied to objects, malicious hard links, and the lack of full revocation
support. For the best security, relabeling should be avoided entirely on a production
system. When it is unavoidable, however, the system should be in a known good state (for
example, immediately after system installation or after verifying that the integrity of the
system has not been compromised). For large labeling changes, such as would result from
a large policy change, it is better for the system to be removed from production use.

13.2.3.1. File-Related Object Labeling Commands



Four main commands are used to relabel file-related objects: chcon(8) , restorecon(8) ,setfiles(8)
, and fixfiles(8) . All these commands relabel files, but they each have a specific use. Typically,
chcon and restorecon are used for small labeling changes, whereas setfiles and fixfiles are used
for larger changes.

The chcon command sets the same security context, or a portion of a security context, for one or
more files based on user input. It is the most basic labeling command and its use is analogous to
chmod(1) . For instance, consider the following example:

$ mkdir public_html
$ ls -dZ public_html/
drwxrwxr-x  joe joe joe:object_r:user_home_dir_t public_html/
$ chcon -t httpd_user_content_t public_html/
$ ls -dZ public_html/
drwxrwxr-x  joe joe joe:object_r:httpd_user_content_t public_html/

In this example, we changed the security context of a newly created directory, which was
automatically assigned the security context joe:object_r:user_home_dir_t , to
joe:object_r:httpd_user_content_t . The -t option alone specifies that the type of file should be
changed while the rest of the security context is retained.

The restorecon command is similar to chcon but sets the security context of file-related objects based
on the default file context files for the current policy. The user, therefore, does not specify a security
context. Instead, restorecon matches the filename with an entry in the file contexts files and applies
the specified security context. In some sense, it is restoring the correct security context. For
example, consider the following:

$ mkdir public_html
$ ls -Zd public_html/
drwxrwxr-x  joe joe joe:object_r:user_home_dir_t public_html/
$ /sbin/restorecon public_html/
$ ls -Zd public_html/
drwxrwxr-x  joe joe user_u:object_r:httpd_user_content_t public_html/

This example is functionally the same as the previous example using chcon but only because the file
context files for this policy has the following entry:

/home/[^/]*/public_html(/.+)? user_u:object_r:httpd_user_content_t

The file context entry specifies that directories in user home directories named public_html/ should
be labeled user_u:object_r:httpd_user_content_t .

We can also use the restorecon command to check whether the labels on file-related objects match
the specification in the file contexts files. For example:

$ mkdir public_html
$ /sbin/restorecon -nv public_html/
/sbin/restorecon reset /home/joe/public_html context
joe:object_r:user_home_dir_t->user_u:object_r:httpd_user_content_t



In this example, we specified the -n to prevent restorecon from actually performing the relabeling
and the -v option, which causes restorecon to print in labeling changes performed. Together these
options result in restorecon printing any differences between the on-disk labeling and the file
contexts files.

Finally, the restorecon command can be used to recursively relabel a large number of files. The
option -R directs restorecon to descend into directories, relabeling all the contained files and
directories. For example, consider the following session:

$ mkdir public_html
$ scp -r gotham:public_html/*.html public_html/.
kmacmillan@gotham's password:
2005d10.html                   100%   28KB  28.3KB/s   00:00
2005d11.html                   100%   22KB  21.5KB/s   00:00
2005d12.html                   100% 8575     8.4KB/s   00:00
2005d7.html                    100%   15KB  14.9KB/s   00:00
calendar.html                  100% 2839     2.8KB/s   00:00
coding_style.html              100% 1040     1.0KB/s   00:00
$ ls scontext public_html/*
joe:object_r:user_home_dir_t public_html/2005d10.html
joe:object_r:user_home_dir_t public_html/2005d11.html
joe:object_r:user_home_dir_t public_html/2005d12.html
joe:object_r:user_home_dir_t public_html/2005d7.html
joe:object_r:user_home_dir_t public_html/calendar.html
joe:object_r:user_home_dir_t public_html/coding_style.html
$ /sbin/restorecon -R public_html/
$ ls scontext public_html/*
user_u:object_r:httpd_user_content_t public_html/2005d10.html
user_u:object_r:httpd_user_content_t public_html/2005d11.html
user_u:object_r:httpd_user_content_t public_html/2005d12.html
user_u:object_r:httpd_user_content_t public_html/2005d7.html
user_u:object_r:httpd_user_content_t public_html/calendar.html
user_u:object_r:httpd_user_content_t public_html/coding_style.html

In this example, we copied several Web pages from another system, which all automatically received
the security context joe:object_r:user_home_dir_t . Running restorecon recursively on the entire
directory relabeled all the files to user_u:object_r:httpd_user_content_t . Here all the files received
the same security context because they matched the same file context specification, but it is equally
possible that some files would have matched other specifications and received different labels.

Despite its ability to recursively relabel files and directories, restorecon is not normally used to make
large labeling changes such as would result from switching policies. For this, we should use the
fixfiles command. The fixfiles command is actually a shell script that uses either restorecon or
setfiles depending on the requested use. Like restorecon , fixfiles uses the file contexts files for
the current policy. Instead of requiring the user to specify which files or directories to relabel or
check, fixfiles works on all mounted filesystems that support extended attribute labeling. The
fixfiles command has three modes, one of which must be specified when running the command:



check Show any file-related objects whose security context does not match what is specified in
the file context files.

restore Relabel any file-related objects whose security context does not match what is specified
in the file context files.

relabel Like restore , but also optionally removes any files in the /tmp directory first.

For example, following is how to relabel all file-related objects on the system:

# /sbin/fixfiles relabel

    Files in the /tmp directory may be labeled incorrectly, this command
    can remove all files in /tmp.  If you choose to remove files from /tmp,
    a reboot will be required after completion.

    Do you wish to clean out the /tmp directory [N]? n

The final command, setfiles , requires that the user manually specify which file contexts files to use
and the starting directory. In addition, setfiles does not traverse across mount points when
descending into directories, meaning that it must be run once for each mounted filesystem that uses
extended attribute labeling. It is more common to use fixfiles unless additional flexibility is needed.

13.2.3.2. Automatic Relabeling

In addition to using the file-related object labeling commands to relabel an entire system, a system
can be automatically relabeled during boot. This is done by creating a file in the root of the filesystem
called /.autorelabel . For example:

# touch /.autorelabel

If this file is present during boot, the entire system is relabeled and the file is removed. The kernel
may also be booted with the autorelabel argument that causes a relabel upon boot without the
/.autorelabel file. When an SELinux system is booted with SELinux disabled, the /.autorelabel file
is automatically created.

13.2.4. Managing Multiple Policies

In general, a production system should not maintain multiple policies and switch between them.
However, this is a common scenario for development systems and may be an issue for some types of
deployments and policy updates.

The procedure for switching policies is as follows:
1.
Install the policy under its name in /etc/selinux/ . (For example, for a policy called mypol , install it
in /etc/selinux/mypol/ , the actual binary policy file should end up in
/etc/selinux/mypol/policy/policy.[ver] ).

2.



Change the policy name in the SELinux configuration file (/etc/selinux/config ). This can be done
with a text editor or using the system-config-securitylevel command.

3.
Set the system to automatically relabel the entire system on the next reboot by using the
/.autorelabel file as discussed earlier.

4.
Reboot the system.

On reboot, the system will load the new policy and relabel all of the file-related objects.



13.3. Summary

The /etc/selinux/config file controls which policy is active (that is, will be loaded during boot
and used by system utilities). This file also controls the default state of SELinux during boot:
enforcing (normal), permissive, and disabled.

Installed policies and their support files are stored in /etc/selinux/[policyname]/. For example,
the default targeted policy in FC4 is stored in /etc/selinux/targeted/. Besides the actual binary
policy file, this directory contains a number of files that are used by system utilities to manage
portions of the policy (for example, users) or object labeling decisions. If installed, this directory
also contains the policy sources.

SELinux provides userspace interfaces to the SELinux LSM modules as a filesystem that is
usually mounted on /selinux/. Most of the files in this filesystem support APIs in the libselinux
library.

The SELinux generic user, user_u, provides a means to add users to an SELinux system without
having to add them to the policy. user_u defines permissions and role authorization for normal,
unprivileged users. To add a privileged administrator user, you must add it to the policy by
editing the active policy's local.users file and reloading the policy.

SELinux produces two types of audit messages: general and AVC. General audit messages
record events relating to system initialization, policy load, and Boolean value changes. AVC
messages (by far the most common) record access denial and allowance events.

In general, file security context labels should not require maintenance on a running production
system. However, if the policy is updated or you are using a development/experimental system,
you may need to manually fix or repair object labeling. SELinux provides four commands to aide
in this task: chcon(8), restorecon(8), setfiles(8), and fixfiles(8). (See Appendix D for a
description of these commands.)



Exercises

1. Explain the differences between enforcing, permissive, and disabled mode.

2. How would you temporarily switch between enforcing and permissive mode?

3. Why don't we need to add ordinary unprivileged users to the policy via the local.users
files?

4. Change a Boolean value. Make sure the change will be preserved.

5. Create a new user account system administrator named joe that may su into the
privileged root account with administrator privilege.

6. Given the following audit message, write a corresponding allow rule that would allow the
denied access in the future:

type=AVC msg=audit(1129843356.666:28947): avc:  denied  { read } for
pid=1730 comm="grep" name=ifcfg-lo dev=dm-0 ino=1243093 scontext
=system_u:system_r:udev_t tcontext=system_u:object_r:net_conf_t
tclass=file

7. Use restorecon to check the file labels for all files and directories in /etc/. How would
you change the command to restore any labels that do not match the file context files?
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This chapter brings together all we have learned throughout the book. It presents a guided tour of
writing a policy module for both the example and reference policies.



14.1. Overview of Writing a Policy Module

In this chapter, we walk through the process of creating a policy module, bringing together all we
have learned throughout the book. We discuss all the steps required to create a policy module for
both the original example policy (Chapter 11, "Original Example Policy") and the newer reference
policy (Chapter 12, "Reference Policy"). For most steps in the process, we present the general idea of
the step and then show examples of that step from both kinds of policies. We think this "by example"
procedure is the best way to understand both policies.

Our presentation is only an introduction to this topic; the only way to learn the techniques and
strategies of an experienced policy writer is to attempt to write modules. The outline we present
provides a starting point for your own policy development. The best guide in the future is the
experience you gain through applying SELinux to solve your own security challenges.

The policy module that we create in this chapter is for the IRC daemon available as part of Fedora
Core 4 (FC4). We chose this example because it is a straightforward, yet representative example of a
network-facing daemon.

In our experience, writing a policy module involves three basic steps: preparation and planning, initial
policy module creation, and testing and analysis. In preparation and planning, we gather critical
information, create a test environment, and specify the security goals for the policy module. In the
initial policy creation step, we combine the gathered information and security goals to create a first
version of the policy module. In the testing and analysis step, we determine the correctness of the
policy module in terms of functionality and security.

In the remainder of this chapter, we present these steps in an idealized, linear fashion. In reality,
policy writing is often an iterative process of writing, testing, and research. In particular, the testing
and analysis step usually results in changes to the policy module.



14.2. Preparation and Planning

Before writing our policy module, we need to gather some information about the applications, create
a test configuration, and specify our security goals. We also must choose our target platform and
policies. For our example, we target an FC4 system and create policy modules for the example strict
policy (see Chapter 11) and a strict reference policy (see Chapter 12).

14.2.1. Gathering Application Information

Like all policy modules, our IRC module is primarily about creating a domain for the IRC daemon.
Writing the policy module will require as much information as possible about how this daemon is
designed and functions. In general, the better we understand the target application, the better the
security and functionality of the resulting policy. Of particular importance is the application
architecture (for example, number and purpose of processes and resources), administration (for
example, documentation of configuration files), and existing security information. Existing information
about the security of the applications, including hardening guidelines, can prove helpful. Be warned,
however, that security guidelines often do not give the full picture of the application security or
necessarily meet your specific security needs.

Here is a sample of the information we collected about the Hybrid IRC daemon, which is standard for
FC4:

The daemon consists of a single process that listens for incoming IRC connections on port 6667.

The IRC protocol (originally described in RFC 1459) is normally implemented on top of TCP, and
there is a single connection per client.

A number of configuration files are stored, by default, under /etc/ircd/.

By default, the IRC daemon has private log files stored under /var/log/ircd/.

The FC4 RPMs create a data directory for the IRC daemon under /var/lib/.

Like most daemons configured for FC, the IRC daemon creates files in /var/run/ storing the PID
of the active daemon process while running.

Other than the logs, PID, /var/lib/, and configuration files and directories, the IRC daemon
does not require any other significant filesystem access.

14.2.2. Creating a Test Environment

Writing policy modules requires testing and (in many cases) experimentation. Therefore, we need a
test installation of the service on a system configured for policy development. Like all testing, it is



important that the test environment match the deployment environment as closely as possible. For
our purposes, we create a basic example IRC daemon installation on FC4. We also need a test
system with an IRC client on the same network.

We start with a basic workstation installation of FC4, to which we need to add the example and
reference policy source files and the IRC daemon. Appendix A, "Obtaining SELinux Sample Policies,"
provides instructions on how to obtain and install the required strict example policy and reference
policy. The IRC daemon is installed with the following yum command. (As root running with the
security root:sysadm_r:sysadm_t, for example, log in and su to root on a standard FC4 system.)

# yum install ircd-hybrid

This installs the IRC daemon, startup scripts, and example configuration files. We are now ready to
edit the configuration file /etc/ircd/ircd.conf. We start with the file simple.conf provided in the
documentation (/usr/share/doc/ircd-hybrid-7.2.0/simple.conf) and modify it slightly (the server
info sid and the operator password options), as shown in Listing 14-1 (changed options are
bolded).

Listing 14-1. Modified IRC Daemon Configuration File (ircd.conf)

1      # Hybrid 7 minimal example configuration file
2      #
3      # $Id: simple.conf 33 2005-10-02 20:50:00Z knight $
4      #
5      # This is a basic ircd.conf that will get your server running with
6      # little modification.  See the example.conf for more specific
7      # information.
8      #
9      # The serverinfo block sets your server's name.  Fields that may
10     # be set are the name, description, vhost, network_name,
11     # network_desc,  and hub.
12
13     serverinfo {
14        name = "irc.example.com";
15         sid = "1se";
16         description = "Test IRC Server";
17         hub = no;
18     };
19
20     # The administrator block sets up the server administrator
21     # information, that is shown when a user issues the /ADMIN
22     # command.  All three fields are required.
23
24     administrator {
25         description = "Example, Inc Test IRC Server";
26         name = "John Doe";
27         email = "jdoe@example.com";
28     };
29



30     # Class blocks define the "privileges" that clients and servers
31     # get when they connect.  Ping timing, sendQ size, and user
32     # limits are all controlled by classes.  See example.conf for
33     # more information
34
35     class {
36         name = "users";
37         ping_time = 90;
38         number_per_ip = 0;
39         max_number = 200;
40         sendq = 100000;
41      };
42
43     class {
44         name = "opers";
45         ping_time = 90;
46         number_per_ip = 0;
47         max_number = 10;
48         sendq = 500000;
49     };
50
51     # Auth blocks define who can connect and what class they
52     # are put into.
53
54     auth {
55         user = "*@*";
56         class = "users";
57     };
58
59     # Operator blocks define who is able to use the OPER command
60     # and become IRC operators. The necessary fields are the
61     # user@host, oper nick name, and the password, encrypted with
62     # the mkpasswd program provided.
63
64     operator {
65         name = "JohnDoe";
66         user = "*@*.example.com";
67         # MD5 encrypted password - "selinux"
68         password = "$1$gv.dyLcq$wr2F.9AqZ/2EKxcsCexKm1";
69         encrypted = yes;
70         class = "opers";
71     };
72
73     # Listen blocks define what ports your server will listen to
74     # client and server connections on. ip is an optional field
75     # (Essential for virtual hosted machines.)
76
77     listen {
78         port = 6667;
79     };
80
81     # Quarantine blocks deny certain nicknames from being used.



82
83     quarantine {
84         nick = "dcc-*";
85         reason = "DCC bots are not permitted on this server";
86     };
87
88     quarantine {
89         nick = "LamestBot";
90         reason = "You have to be kidding me!";
91     };
92
93     quarantine {
94         nick = "NickServ";
95      reason = "There are no Nick Services on this Network";
96     };
97
98     # The general block contains most of the configurable options
99     # that were once in config.h. The most important ones are below.
100    # For the rest, please see example.conf. Note that variables not
101    # mentioned here are set to the ircd defaults, which are listed in
102    # src/s_conf.c:set_default_conf.
103
104    general {
105        hide_spoof_ips = yes;
106        # Identd is commonly disabled on modern systems
107        disable_auth = yes;
108        # Control nick flooding
109        anti_nick_flood = yes;
110        max_nick_time = 20;
111        max_nick_changes = 5;
112
113        # Show extra warnings when servers connections cannot succeed
114        # because of no "N" line (a misconfigured connect block)
115        warn_no_nline = yes;
116    };

Tip

For policy development, it is important to understand all the files and directories that are
part of an application. The command rpm -ql ircd-hybrid will list the files and directories
installed as part of the IRC daemon package.

The three changes that we make to this file are to change the unique identifier of the server (line
15), the administrative password (line 68), and disable the use of identd (line 107). After saving this
file as /etc/ircd/ircd.conf, we start the server (for now, on a permissive mode SELinux FC4
system) with the following command:



# setenforce 0
# /etc/init.d/ircd start
Starting ircd: ircd: version hybrid-7.2.0
ircd: pid 9052
ircd: running in background mode from /usr/lib/ircd [  OK  ]

These commands show the ircd service starting successfully. Once started, the log file
/var/log/ircd/ircd.log should contain the following entry (at or near the end):

[2006/2/3 04.25] Server Ready

Note that there may be some access vector cache (AVC) messages generated because we have not
yet installed a specific policy for the server. We can ignore them for now.

14.2.3. Specifying Security Goals

The last preparation step is to specify the security goals for our IRC policy module. Without
understanding what security means for this application, we have no basis for making security-critical
decisions during the development of our policy module proverb. This is our chance to think about the
overall security concerns before we become immersed in the many details of the policy language. (Or
in the words of the proverbial saying, let's examine the "forest" before we are overwhelmed by the
"trees.") We will revisit these security goals after creating our policy module to determine whether we
meet our objectives (to determine whether our forest is what we expected after we spend all our
time planting trees).

How to correctly determine and specify security goals is a large topic itself, beyond the scope of this
book. It comes mostly with experience and the correct mind set. Following are some security goals
for a basic policy module for our IRC daemon:

ircd service confinement Confine the ircd service to the minimum amount of access required
to function properly. This will prevent an exploitable flaw in the service from being used to
compromise the entire system.

System protection Protect the system from the IRC service to prevent privilege escalation
through exploiting IRC.

Configuration file protection Protect the configuration files from modification by
nonadministrative domains (for example, domains other than sysadm_t) and the service itself.

These security goals are just a starting point. Many other security goals are possible for an IRC
daemon or similar applications.



14.3. Creating an Initial Policy Module

In the next steps, we create an initial policy based on the information we gathered and the security
goals we specified. To create the most secure policy module possible, we want to create a policy that
grants only the access that we expect the IRC daemon to require before testing begins.

14.3.1. Creating Policy Module Files

We begin our policy module development by creating all the policy module files for both the example
and reference policies.

14.3.1.1. Example Policy

As we discussed in Chapter 11, a policy module in the example policy consists of two files: the policy
rules file (.te) and the file context files (.fc). Therefore, for the IRC daemon policy module we need
to create the files domains/programs/ircd.te and file_contexts/programs/ircd.fc. Initially, these
files can be empty.

Note

All path names are relative to the root of the policy source directory. For the example policy
this is /etc/selinux/strict/src/policy, and for the reference policy this is
/etc/selinux/refpolicy/src/policy. We also refer to just the filenames (for example
ircd.te, meaning /etc/selinux/strict/src/policy/domains/programs/ircd.te for the
example policy).

14.3.1.2. Reference Policy

As discussed in Chapter 12, a reference policy module consists of three files: the private policy file
(.te), an external interface file (.if), and the labeling policy file (.fc). Because the IRC daemon is a
system service, we put its policy module files in the services layer (that is,
policy/modules/services/ircd.te, policy/modules/services/ircd.if, and
policy/modules/services/ircd.fc). The files ircd.if and ircd.fc can be empty initially, but the file
ircd.te must minimally declare the module as follows:

# Ircd policy module declaration
policy_module(ircd, 1.0)



14.3.2. Declaring Types

The next step is to declare the appropriate domain and object types for our policy module.
Remember, access can be allowed only between types, so we must identify and declare the correct
set of types to represent our application architecture. In many ways, this is the most important step
in policy module development. If we do not correctly identify the needed types, particularly domain
types, the rest of the policy cannot be correct.

Policy modules typically declare types for the following:

Domains One or more domain types for the application processes

Entrypoints At least one entrypoint executable file type for each of the domains

Application resources One or more types for the resources controlled by the application (for
example, temporary files, configuration files, log files, socket files, and so on)

The types we declare for our IRC daemon policy module closely match the high-level architecture of
target application. Our IRC types are as follows:

ircd_t Domain type for the IRC daemon process

ircd_exec_t Entrypoint type for the IRC daemon executable file

ircd_var_run_t File type for PID files stored in the directory /var/run

ircd_conf_t File type for the IRC daemon configuration files

ircd_log_t File type for the IRC daemon logs

ircd_var_lib_t File type for files stored in /var/lib/ircd

This is a representative set of types for a simple daemon such as IRC. Notice that other than the first
two types, which are the domain type and the entrypoint type (ircd_t and ircd_exec_t), all these
types are for application resources controlled by ircd.

14.3.2.1. Example Policy

Recall that in the example policy, types are declared directly (including the list of associated
attributes) or through macros. Listing 14-2 shows our type declarations for the example policy IRC
daemon policy module. We have directly declared all the types in our policy module instead of using
macros to make the policy module clearer. Notice that each of these types has a variety of attributes.
For example, the log file type ircd_log_t has the attributes file_type, sysadmfile, and logfile. We
determined the needed attributes based on the intended use for each type (that is, ircd_log_t is
intended as a type for a log file that can be accessed by system administrators) and the available
attributes.



Listing 14-2. Example Policy: IRC Daemon Type Declarations (ircd.te)

1      ###################################################
2      #
3      # Type declarations
4      #
5
6      # ircd domain
7      type ircd_t, domain;
8
9      # ircd entrypoint
10     type ircd_exec_t, file_type, exec_type;
11
12     # PID file /var/run/ircd.pid
13     type ircd_var_run_t, file_type;
14
15     # configuration files
16     type ircd_conf_t, file_type, sysadmfile;
17
18     # log files
19     type ircd_log_t, file_type, sysadmfile, logfile;
20
21     # files and directories under /var/lib/ircd
22     type ircd_var_lib_t, file_type, sysadmfile;

Tip

Recall that the file attrib.te in the root directory of the example policy source contains all
the attribute declarations and documentation about their use.

14.3.2.2. Reference Policy

In the reference policy, types are always directly declared and do not include attributes. Listing 14-3
shows our type declarations for the IRC reference policy private policy module (ircd.te). Notice that
each of the type declarations is paired with an interface call (to another, existing policy module) that
is functionally equivalent to the attribute assignments in the example policy module in Listing 14-2.
For instance, line 24 declares the type ircd_conf_t, and line 25 marks it as a configuration file by
calling the interface files_config_file(). Determining which interface to call for each type
declaration is similar to determining which attributes are required, although the reference policy has
better documentation and is easier to understand and use.

Listing 14-3. Reference Policy: IRC Daemon Private Type Declarations
(ircd.te)



1      # Ircd policy module declaration
2      policy_module(ircd, 1.0)
3
4      ########################################
5      #
6      # Type declarations
7      #
8
9      # ircd domain
10     type ircd_t;
11
12     # ircd entrypoint
13     type ircd_exec_t;
14
15     # mark ircd_t as a domain and ircd_exec_t
16     # as an entrypoint into that domain
17     init_daemon_domain(ircd_t, ircd_exec_t)
18
19     # PID file /var/run/ircd.pid
20     type ircd_var_run_t;
21     files_pid_file(ircd_var_run_t)
22
23     # configuration files
24     type ircd_conf_t;
25     files_config_file(ircd_conf_t)
26
27     # log files
28     type ircd_log_t;
29     logging_log_file(ircd_log_t)
30
31     # files and directories under /var/lib/ircd
32     type ircd_var_lib_t;
33     files_type(ircd_var_lib_t)

Tip

Remember that the reference policy includes a significant amount of documentation
generated from the source. The documentation is the best way to find appropriate
interfaces like those used above in the type declarations. You can view the documentation
at the reference policy Web site or locally after running the command make html in the
reference policy source directory. In FC5, the HTML documentation is available under
/usr/share/doc/selinux-policy-x.y.z/html/.

14.3.3. Allowing Initial Restrictive Access



The next step is to grant permissions based on our best understanding of the initial, restrictive access
needed for the IRC domain type (ircd_t). The access allowed should reflect both our security goals
and the functional needs of the IRC daemon. In our experience, it is helpful to first plan the access
required in an abstract way because writing raw SELinux policy rules requires significant attention to
detail. By creating a higher-level plan first, it is easier to keep the larger security goals in mind. For
example, we expect the ircd_t domain to have the following access consistent with our security
goals:

Log files Create, read, and append (ircd_log_t)

Configuration files Read (ircd_conf_t)

PID files Create, read, and write (ircd_var_run_t)

var files Create, read, and write (ircd_var_lib_t)

Network access

Network interfaces. TCP send and receive on all

Nodes. TCP send and receive to all

Ports. TCP name_bind on IRC ports and send and receive to all others

Resolve DNS names

Use shared libraries

Read localization resources

Read directories and files commonly needed by network applications include the device
/dev/null and sysctl configuration data under the /proc/ directory

Note

We have chosen to give fairly broad network access initially. We are not, for example,
restricting the network interfaces and hosts with which the IRC daemon can communicate.
This is a common practice that removes the need to customize the policy based on local
network settings and topology. It is possible (and often desirable), however, to add these
restrictions if customizing the policy for each server because local adjustments are feasible.

14.3.3.1. Example Policy

In the example policy, we allow access using a combination of direct allow rules and example policy
macros. For example, consider Listing 14-4. (This policy section is added after the type declarations
that were discussed in Listing 14-2.)



Listing 14-4. Example Policy: IRC Daemon Initial Allowed Access (ircd.te)

1      ###################################################
2      #
3      # Ircd - core access
4      #
5
6      # Log files - create, read, and append
7      append_logdir_domain(ircd)
8
9      # Configuration files - read
10     allow ircd_t ircd_conf_t : dir r_dir_perms;
11     allow ircd_t ircd_conf_t : file r_file_perms;
12     allow ircd_t ircd_conf_t : lnk_file { getattr read };
13
14     # PID file - create, read, and write
15     file_type_auto_trans(ircd_t, var_run_t, ircd_var_run_t, file)
16     allow ircd_t var_t : dir search;
17
18     # /var/lib/ircd files/dirs - create, read, write
19     file_type_auto_trans(ircd_t, var_lib_t, ircd_var_lib_t, file)
20     allow ircd_t ircd_var_lib_t : dir rw_dir_perms;
21
22     # Network access - the ircd daemon is allowed to send
23     # and receive network data to all nodes and ports over
24     # all network interfaces (through the can_network_server
25     # macro). Additionally, it can name_bind to the ircd
26     # port (ircd_port_t).
27     allow ircd_t ircd_port_t:tcp_socket name_bind;
28     can_network_server(ircd_t)
29
30     # use shared libraries
31     uses_shlib(ircd_t)
32
33     # read localization data
34     read_locale(ircd_t)
35
36     # read common directories / files including
37     #     * proc
38     #     * /dev/null
39     #     * system variables
40     allow ircd_t { self proc_t }:dir r_dir_perms;
41     allow ircd_t { self proc_t }:lnk_file { getattr read };
42     allow ircd_t null_device_t:chr_file rw_file_perms;
43     allow ircd_t sysctl_type:dir r_dir_perms;
44     allow ircd_t sysctl_type:file r_file_perms;
45     allow ircd_t sysctl_t:dir search;
46     allow ircd_t sysctl_kernel_t:dir search;
47     allow ircd_t sysctl_kernel_t:file { getattr read };



Notice that each commented block of rules corresponds to one of the items in our list of initial
accesses specified. To allow access between types declared in our module, we primarily use allow
rules directly. For example, lines 1012 permit the domain type ircd_t to read configuration files (that
is, files and directories with the type ircd_conf_t). There are exceptions, however, where policy rules
between our IRC types are added to our policy through macros. For example, the
file_type_auto_trans() macro on line 19 allows the domain type ircd_t to create, read, and write
files with the type ircd_var_run_t (that is, /var/run/ircd.pid).

Access to types declared outside of our policy module is also allowed using a combination of direct
allow rules and macros. For example, line 42 allows the ircd_t domain to read and write character
device files with the type null_device_t (that is, /dev/null) using an allow rule that directly
references both types. This is an example of one of the example policy's biggest weakness of the
example (that is, closely coupled policy modules). Because our IRC module must have explicit
knowledge of types declared in other modules (null_device_t), the implementation of the two
modules are intertwined. By contrast, the access required to use shared libraries is allowed entirely
by the uses_shlib() macro, as shown on line 31.

In the example policy, the choice of whether to use direct access or macros is primarily one of style
and whether an appropriate macro is available. There are no strong conventions as in the reference
policy.

The network access for the IRC daemon is allowed through the can_network() macro. Unfortunately,
this macro allows more access than our (or nearly any) application needs, although it has been
improved from its original implementation. In particular, it allows sending and receiving raw and UDP
packets in addition to TCP. We used the macro despite the additional access it allows to reflect
common practice for the example policy. There is no convenient way, other than direct allow rules, to
allow a smaller subset of network access and most policy modules use the can_network() macro to
allow network access.

Tip

Most of the macros used in our policy module reflect common practice for the example
policy. Reading existing policy modules is the best way to familiarize yourself with the
common macros and how they are used. Reading the macros in the macros/*.te files is also
helpful.

14.3.3.2. Reference Policy

Access in the reference policy is allowed by a combination of allow rules and call to interfaces defined
in other modules. Recall from Chapter 12 that access to any type not declared in our policy module is
allowed only through an interface. So, unlike our example policy module, the IRC daemon private
policy file will never reference types from other modules directly. Listing 14-5 is the reference policy
version of our initial restrictive access for the IRC daemon (which would be in the ircd.te file
following the rules in Listing 14-3).



Listing 14-5. Reference Policy: IRC Daemon Private Allowed Access
(ircd.te)

1      ##########################################
2      #
3      # Ircd - core access
4      #
5
6      # Log files - create, read, and append
7      allow ircd_t ircd_log_t : dir ra_dir_perms;
8      allow ircd_t ircd_log_t : file { create ra_file_perms };
9      logging_filetrans_log(ircd_t, ircd_log_t, file)
10     logging_search_logs(ircd_t)
11
12     # Configuration files - read
13     allow ircd_t ircd_conf_t : dir r_dir_perms;
14     allow ircd_t ircd_conf_t : file r_file_perms;
15     allow ircd_t ircd_conf_t : lnk_file { getattr read };
16
17     # PID file - create, read, and write
18     allow ircd_t ircd_var_run_t : dir rw_dir_perms;
19     allow ircd_t ircd_var_run_t : file create_file_perms;
20     files_filetrans_pid(ircd_t, ircd_var_run_t, file)
21
22     # /var/lib/ircd files/dirs - create, read, write
23     allow ircd_t ircd_var_lib_t : dir create_dir_perms;
24     allow ircd_t ircd_var_lib_t : file create_file_perms;
25     files_filetrans_var_lib(ircd_t, ircd_var_lib_t, { file, dir })
26
27     # Network access - the ircd daemon is allowed to send
28     # and receive network data to all nodes and ports over
29     # all network interfaces. Additionally, it can name_bind
30     # to the ircd port (ircd_port_t)
31     allow ircd_t self : tcp_socket create_stream_socket_perms;
32     corenet_tcp_sendrecv_all_if(ircd_t)
33     corenet_tcp_sendrecv_all_nodes(ircd_t)
34     corenet_tcp_sendrecv_all_ports(ircd_t)
35     corenet_non_ipsec_sendrecv(ircd_t)
36     corenet_tcp_bind_all_nodes(ircd_t)
37     corenet_tcp_bind_ircd_port(ircd_t)
38     sysnet_dns_name_resolve(ircd_t)
39
40     # use shared libraries
41     libs_use_ld_so(ircd_t)
42     libs_use_shared_libs(ircd_t)
43
44     # read localization data
45     miscfiles_read_localization(ircd_t)
46
47     # read common directories / files including



48     #       * /etc (search)
49     # * system variables
50     files_search_etc(ircd_t)
51     kernel_read_kernel_sysctl(ircd_t)
52     kernel_read_system_state(ircd_t)
53     kernel_read_all_sysctl(ircd_t)

Again, each commented block represents where we have allowed all of the initial access listed. The
choice of using direct allow rules versus interfaces in the reference policy follows a strong
convention. It is more straightforward than the choice of using direct allow rules versus macros in
the example policy because of the clear encapsulation of types in the reference policy.

Notice that the interfaces used in the reference policy are clearer and more explicit than the macros
in the example policy. The explicit nature of interfaces sometimes makes a reference policy module
more verbose, as is the case in allowing the use of shared libraries on lines 41 and 42. However, this
verbosity also allows for more choice and better granularity of access. For example, the network
access that we allow in the reference policy version of our policy module exactly matches the initial
restrictive access that we intended. This is possible because the network access is broken down into
many interfaces, each allowing a small portion of the access, rather than one broad macro in the
example policy (that is, the can_network() macro).

14.3.4. Allowing Domain Transitions and Authorizing Roles

For our new domain to be effective, we must permit other domains to transition to our new domain.
To do this, we must create type_transition rules, allow the domain transition, and authorize our
domain type for the appropriate roles.

As a general practice, the number of domains that may transition to a daemon domain should be
limited. The IRC daemon package that comes with FC4 includes init scripts to allow starting from
init during boot or directly by the system administrator. To permit both of these startup methods,
we must ensure our policy does the following:

Allow initrc_t to automatically transition to ircd_t tHRough ircd_exec_t (allow init to start
the daemon).

Allow sysadm_t to automatically transition to ircd_t through ircd_exec_t (allow system
administrator to start the daemon).

Authorize ircd_t for the system_r role (authorize for init's role).

Automatically role transition from sysadm_r to system_r on execution of ircd_exec_t (authorize
for system administrator's role).

Note

Using a role transition rule to run the IRC daemon in the system_r role is not required. We



could have authorized ircd_t for sysadm_r instead. The use of the role transition is
standard practice for system_r, however, because it results in more similar security
contexts regardless of whether the daemon as started by init or the system administrator.
The tradeoff is that the user, presumably root, must be authorized for both roles.

14.3.4.1. Example Policy

We accomplish the domain transitions and role authorizations in the example policy as shown in
Listing 14-6.

Listing 14-6. Example Policy: IRC Daemon Domain and Role
Authorizations (ircd.te)

1      #################################################
2      #
3      # Domain Transitions and Role Authorizations
4      #
5
6      role system_r types ircd_t;
7
8      # allow init to start ircd
9      domain_auto_trans(initrc_t, ircd_exec_t, ircd_t)
10
11     # allow sysadm_t to start ircd_t
12     domain_auto_trans(sysadm_t, ircd_exec_t, ircd_t)
13     role_transition sysadm_r ircd_exec_t system_r;

The domain_auto_trans() macro both allows the domain transition and adds the necessary type
transition rule required for an automatic domain transition.

14.3.4.2. Reference Policy

We have already accomplished this step in the reference policy by using the interface
init_daemon_domain() on line 17 in Listing 14-3. This interface allows all the domain and role
transitions described previously in a consistent, configurable manner.

14.3.5. Integrating into the System Policy

Our initial restrictive access is primarily concerned with allowing the access needed by the IRC
daemon. We also have to allow other domain types access to the resource types in our policy
module. For example, log files are useful only if an administrator tool can read them. This is what we
mean by integrating into the system policy.



Much of the more common additional access is handled automatically through attributes in the
example policy and interfaces in the reference policy. For example, adding the file_type attribute
(example policy) or calling the files_type() interface (reference policy) allows a variety of domains,
including sysadm_t, to read files with the associated file type.

We often need to allow module-specific access for certain types of policy resources that we can grant
to other domains. To demonstrate, let's expand our modules to allow other domains to read files with
the type ircd_log_t.

14.3.5.1. Example Policy

There is no defined way to allow access from other policy modules in the example policy. The rules
can simply be placed either in our policy module or in the other policy, with types from both policy
modules being directly referenced. For instance, the policy statements in Listing 14-7 allow
logrotate_t to read the IRC daemon log files. In an example policy, we could have just as easily put
these rules in the logrotate module.

Listing 14-7. Example Policy: IRC Daemon, Allowing Access for logratate
Domain (ircd.te)

1     #################################################
2     #
3     # Integrate Into System Policy
4     #
5
6     ifdef(`logrotate.te', `
7     allow logrotate_t ircd_log_t:dir search;
8     allow logrotate_t ircd_log_t:file { getattr read };
9     ')

Notice that we wrap these rules in an m4 ifdef statement that prevents the inclusion of the rules if
the logrotate policy module is not present during policy compilation. The challenge with this
approach of course, is that it is difficult to know where all the rules for a given type are located in the
policy. This is another example of one of the motivations for the improvements in reference policy
(that is, strong modularity and encapsulation).

14.3.5.2. Reference Policy

Allowing access from other policy modules is more structured in the reference policy through the use
of interfaces. Listing 14-8 shows the external interface file (ircd.if) for our IRC policy module that
declares an interface for reading the IRC daemon log files. As discussed in Chapter 12, in the
reference policy, the only way for other modules to access a private type is to use an interface.

Listing 14-8. Reference Policy: IRC Daemon External Interface Example



(ircd.if)

1      ## <summary>IRC daemon</summary>
2
3      ########################################
4      ## <summary>
5      ##          Read IRC daemon log files.
6      ## </summary>
7      ## <param name="domain">
8      ##          Domain allowed access.
9      ## </param>
10     #
11     interface(`irc_read_log',`
12         gen_require(`
13             type ircd_log_t;
14        ')
15
16        logging_search_logs($1)
17        allow $1 ircd_log_t:dir search_dir_perms;
18        allow $1 ircd_log_t:file r_file_perms;
19    ')

Allowing access by other domains is a simple matter of calling this interface in the other policy
modules. For example, to allow logrotate to read the IRC log files, the following interface call would
be added to the logrotate policy module:

irc_read_log(logrotate_t)

Note

Notice that the interface file also includes the module summary documentation and
summaries for each interface. This allows us to generate detailed interface documentation
from reference policy source files.

14.3.6. Creating the Labeling Policy

The next step, which completes our initial policy module, is to create and apply the labeling policy in
the form of file contexts statements, as discussed in Chapter 10, "Object Labeling." The labeling
policy assigns the types intended for filesystem objects to files and directories. We use the
information we gathered about the location of files and directories installed with the IRC daemon to
derive statements.



14.3.6.1. Example Policy

Listing 14-9 shows the file context file (ircd.fc) for the example policy. Notice that this file is a
straightforward, hard-coded listing of files and directories for the IRC daemon in a syntax
understandable by the setfiles program (see Chapter 10).

Listing 14-9. Example Policy: IRC Daemon File Contexts File (ircd.fc)

1      # ircd labeling policy
2      # file: ircd.fc
3      /usr/bin/ircd         --     system_u:object_r:ircd_exec_t
4      /etc/ircd(/.*)?              system_u:object_r:ircd_conf_t
5      /var/log/ircd(/.*)?          system_u:object_r:ircd_log_t
6      /var/lib/ircd(/.*)?          system_u:object_r:ircd_var_lib_t
7      /var/run/ircd(/.*)?          system_u:object_r:ircd_var_run_t

14.3.6.2. Reference Policy

Listing 14-10 shows the labeling policy file (ircd.fc) for our reference policy module.

Listing 14-10. Reference Policy: IRC Daemon Labeling Policy File (ircd.fc)

1      # ircd labeling policy
2      # file: ircd.fc
3      /usr/bin/ircd   --     gen_context(system_u:object_r:ircd_exec_t, s0)
4      /etc/ircd(/.*)?        gen_context(system_u:object_r:ircd_conf_t, s0)
5      /var/log/ircd(/.*)?    gen_context(system_u:object_r:ircd_log_t, s0)
6      /var/lib/ircd(/.*)?    gen_context(system_u:object_r:ircd_var_lib_t, s0)
7      /var/run/ircd(/.*)?    gen_context(system_u:object_r:ircd_var_run_t, s0)

The reference policy ircd.fc is essentially identical to the equivalent file in the example policy, except
for the use of the gen_context() template interface macro. This template interface allows the
reference policy to transparently handle multilevel security / multicategory security (MLS/MCS) and
non-MLS/MCS policies from the same policy source. All security contexts must be specified using
gen_context() in the reference policy.

14.3.7. Applying the Policy

The final step before testing is to compile, install, load, and apply the policy. This is done in the same
way for both the example and reference policies. First, compile, install, and load the policy using the
following commands:



# make && make install && make load

If this is successful you should not see any errors and the build system will show a successful policy
load. For example, for the example policy, the end output for a successful compile will be similar to
the following. The reference policy output will be different but equally obscure to the uninitiated.

Building file contexts f1iles...
/usr/bin/checkpolicy  -o policy.20 policy.conf
/usr/bin/checkpolicy:  loading policy configuration from policy.conf
/usr/bin/checkpolicy:  policy configuration loaded
/usr/bin/checkpolicy:  writing binary representation (version 20) to policy.20
Compiling policy ...
/usr/bin/checkpolicy  -o /etc/selinux/strict/policy/policy.20 policy.conf
/usr/bin/checkpolicy:  loading policy configuration from policy.conf
/usr/bin/checkpolicy:  policy configuration loaded
/usr/bin/checkpolicy:  writing binary representation (version 20) to
/etc/selinux/strict/policy/policy.20
/usr/bin/checkpolicy  -c 19 -o /etc/selinux/strict/policy/policy.19 policy.conf
/usr/bin/checkpolicy:  loading policy configuration from policy.conf
/usr/bin/checkpolicy:  policy configuration loaded
/usr/bin/checkpolicy:  writing binary representation (version 19) to
/etc/selinux/strict/policy/policy.19
install -m 644 tmp/system.users /etc/selinux/strict/users/system.users
install -m 644 tmp/customizable_types
/etc/selinux/strict/contexts/customizable_types
install -m 644 tmp/port_types /etc/selinux/strict/contexts/port_types
Installing file contexts files...
install -m 644 file_contexts/homedir_template
/etc/selinux/strict/contexts/files/homedir_template
install -m 644 file_contexts/file_contexts
/etc/selinux/strict/contexts/files/file_contexts
Loading Policy ...
/usr/sbin/load_policy /etc/selinux/strict/policy/policy.19
touch tmp/load

In addition, the policy load can be seen in the audit log. For example, here is an audit message
generated from a load policy event:

Feb 13 23:07:48 kernel: audit(1139890068.158:15709654): avc:  granted  {
load_policy } for  pid=1173 comm="load_policy"
scontext=root:sysadm_r:load_policy_t tcontext=system_u:object_r:security_
t tclass=security



Building and Installing Policy Modules on FC5

Building and installing policy modules is greatly simplified in FC5 through the use of
loadable policy modules and the development environment installed with the policy rpm.
To build our reference policy IRC module as a loadable module, we need to 1) create a
new directory, 2) copy our IRC source files to the new directory (that is,
ircd.te,ircd.fc, and ircd.if), and 3) copy the example loadable module Makefile from
/usr/share/selinux/devel/Makefile to the new directory. After these steps, we will have
a directory that looks like the following:

$ ls
ircd.fc  ircd.if  ircd.te Makefile

Running the make command should now build a loadable policy module package. For
example:

[View full width]$ make

Compiling targeted ircd module

/usr/bin/checkmodule:  loading policy configuration from tmp/ircd.tmp

/usr/bin/checkmodule:  policy configuration loaded

/usr/bin/checkmodule:  writing binary representation (version 5)
 to tmp/ircd.mod
Creating targeted ircd.pp policy package

rm tmp/ircd.mod tmp/ircd.mod.fc

This creates the policy package ircd.pp. The example Makefile builds the policy against
the current active policy using the reference policy interfaces installed in
/usr/share/selinux/devel/include. The policy package can be installed with the
following command (as the system administrator):

# /usr/sbin/semodule -i ircd.pp

If there are no errors our loadable policy module is installed. The semodule command will
show the loadable modules installed with the following command:

# /usr/sbin/semodule -l
ircd    1.0

As you can see, we have successfully installed our IRC policy package, and it is now
active as part of the running policy.



After the policy is successfully installed and loaded, we can relabel the filesystem to ensure that our
new file contexts file is effective. Again, this procedure is the same for the example and reference
policy. Below, we use the restorecon command to relabel all the files and directories specified in the
file context file for our module:

# restorecon /usr/bin/ircd
# restorecon -R /etc/ircd/ /var/log/ircd/ /var/lib/ircd/

We can verify that the labeling occurred correctly using the ls command (note you can also use ls -
Z), as follows:

# ls scontext /usr/bin/ircd /var/log/ircd/
system_u:object_r:ircd_exec_t    /usr/bin/ircd

/var/log/ircd/:
system_u:object_r:ircd_log_t     ircd.log

Tip

Labeling a filesystem with newly defined types can only occur after loading the new policy
because the kernel must be aware of the new types.

After these steps, our initial policy module for the IRC daemon is now complete and ready for testing.



14.4. Testing and Analyzing the Policy

In the testing and policy analysis step, we verify that our policy module is functionally correct and
meets our security goals.

14.4.1. Testing the Policy Module

Assuming that we were able to compile, install, and load our new policy, and that we successfully
labeled the filesystem, we are ready to begin functional testing of the IRC daemon and policy module.
We perform only basic functional tests in this step. More extensive testing should be performed
before using this policy module in a production environment.

First, we verify that the system is in permissive mode and the daemon is stopped. Running in
permissive mode allows the IRC daemon to function properly so that we can see all of the requested
access that our policy module did not allow. (Recall that in permissive mode, access denials are
audited but not enforced.) The commands to switch to permissive mode and stop the IRC daemon
are as follows:

# setenforce 0
# /etc/init.d/ircd stop
Stopping ircd:                                             [  OK  ]

Next, we need to use the seaudit utility from the setools package, which should be installed on FC4
systems (see Appendix D, "SELinux Commands and Utilities," for an overview of setools, the open
source package which, among other tools, includes apol). With seaudit, open the audit log and turn
on monitoring using the Toggle Monitor button, ensure the status is On on the status bar. (see Figure
14-1). We use seaudit to view the audit log to determine whether the IRC daemon requests
additional access not allowed by our policy module. We can also view the log files using the tail
utility with the command tail -f /var/log/audit/audit.log.

Figure 14-1. Seaudit displaying audit messages generated while testing
the IRC daemon

[View full size image]



After starting seaudit, we start the IRC daemon with the following command:

# setenforce 0
# /etc/init.d/ircd start
Starting ircd: ircd: version hybrid-7.2.0
ircd: pid 9052
ircd: running in background mode from /usr/lib/ircd [  OK  ]

If everything is configured correctly, we should be able to display the IRC daemon process with the
correct type using the ps command, as follows:

# ps axZ | grep ircd
root:system_r:ircd_t             1519 ?        00:00:00 ircd

We see that the IRC daemon is running with the correct security context.

Next, we connect to the IRC daemon using an IRC client. For example, Figure 14-2 shows the xchat
client successfully connecting to the IRC daemon.

Figure 14-2. Connecting to the IRC daemon using xchat

[View full size image]



Tip

Make certain that the firewall settings for the test system allow IRC traffic if you are using
an IRC client on a separate machine.

14.4.1.1. Evaluating Audit Messages and Allowing Additional Access

After exercising the IRC daemon with simple tests, such as joining and talking on a channel, we can
examine the audit logs for denials related to our policy module. Figure 14-1 shows the relevant audit
messages generated during our testing of the IRC daemon. These messages show the IRC daemon
requesting five additional accesses, which we did not allow in our initial policy:

Read configuration files in /etc/ (etc_t).

Fork another process.

Read and write to pseudo terminals owned by the system administrator (sysadm_devpts_t).

Write access to the configuration file (ircd_conf_t).

We must consider each of the access requests to determine whether additional access should be
added to our policy module. It is important to not allow additional access simply because the IRC
daemon attempted the access. When evaluating audit messages, the goal is not to just add allow
rules until the denial messages disappear. Instead, each requested access should be carefully



considered and, if it conflicts with our security goals, not permitted if the application can continue to
function properly.

For example, in the audit messages listed previously, we see that the IRC daemon attempts to access
its configuration file (ircd_conf_t) for writing. Allowing this access violates our security goal to
protect the configuration file. Also, allowing the daemon to read and write system administrators'
pseudo terminals is unnecessary and opens a potential attack vector. The other access requests
appear to be appropriate, so we add allow rules to permit the access. Instead of allowing write
access to the configuration files and allowing read and write to pseudo terminals owned by the
system administrator, however, we add dontaudit rules and test to determine whether the IRC
daemon correctly functions without this access.

Tip

Audit messages with unexpected types may signal a labeling problem. For example, a
denial message for sysadm_t accessing an IRC daemon related type might be a sign that
the entrypoint (/usr/bin/ircd) is not labeled correctly (ircd_exec_t), preventing the
domain transition.

14.4.1.2. Adding Additional Access in the Example Policy

The additional access is allowed in the example policy with the following new policy statements in the
ircd.te file:

allow ircd_t self : process fork;
allow ircd_t etc_t : file r_file_perms;

Audit messages related to the access that we are not permitting are suppressed with the following
dontaudit rules:

dontaudit ircd_t ircd_conf_t : file write;
dontaudit ircd_t sysadm_devpts_t : chr_file { getattr read write };

14.4.1.3. Adding Additional Access in the Reference Policy

To add the other additional accesses, we add the following policy statements in the ircd.te file:

allow ircd_t self : process fork;
files_read_etc_files(ircd_t)

As before, audit messages related to the access that we are not permitting are suppressed with the
following dontaudit rule and interface call:



dontaudit ircd_t ircd_conf_t : file write;
userdom_dontaudit_use_sysadm_ptys(ircd_t)

14.4.1.4. Testing the Additional Access

After compiling, installing, and reloading the modified policy, we must test the IRC daemon again.
This time we will test in enforcing mode. Enforcing mode can be set and the IRC daemon restarted
using the following commands:

# setenforce 1
# /etc/init.d/ircd restart
Stopping ircd:                                             [  OK  ]
Starting ircd: ircd: version hybrid-7.2.0
ircd: pid 2075
ircd: running in background mode from /usr/lib/ircd        [  OK  ]

Performing the same functional tests shows that the IRC daemon functions correctly despite the
denial of write access to the configuration file and read/write access to system administrators'
pseudo-terminals. Additional testing is likely required, but otherwise we have demonstrated that our
policy module is functionally correct.

14.4.2. Policy Analysis

The final step in developing our policy module is to perform policy analysis to verify that we met our
security goals. Functional testing is not sufficient as our goal is to add security, not functions. After
all, we had a functioning IRC daemon before creating our policy module. Policy analysis, particularly
using automated tools such as apol, enables us to verify that we added security with our policy
module.

For example, Figure 14-3 shows a search in apol for all access that ircd_t has to ircd_conf_t,
including indirect access through attributes. This allows us to verify that the IRC daemon (ircd_t)
does not have write access to its configuration files (ircd_conf_t).

Figure 14-3. An apol rules search showing no write access by ircd_t to
ircd_conf_t

[View full size image]





14.5. Emerging Policy Development Tools

Many different development tools are emerging that simplify the policy module development process.
These range from integrated development environments such as SLIDE (shown in Figure 14-4) to
automated policy generation tools such as Polgen. More information about these tools is provided in
Appendix D.

Figure 14-4. SLIDE integrated policy development environment
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14.6. Complete IRC Daemon Module Listings

For completeness, we conclude this chapter with complete listings of the IRC daemon modules for
both the example and reference policy.

Listing 14-11. Example Policy: IRC Daemon Policy Module File (ircd.te)

1      ###################################################
2      #
3      # ircd policy module
4      #
5      # file: ircd.te
6      #
7
8      ###################################################
9      #
10     # Type declarations
11     #
12
13     # ircd domain
14     type ircd_t, domain;
15
16     # ircd entrypoint
17     type ircd_exec_t, file_type, exec_type;
18
19     # PID file /var/run/ircd.pid
20     type ircd_var_run_t, file_type;
21
22     # configuration files
23     type ircd_conf_t, file_type, sysadmfile;
24
25     # log files
26     type ircd_log_t, file_type, sysadmfile, logfile;
27
28     # files and directories under /var/lib/ircd
29     type ircd_var_lib_t, file_type, sysadmfile;
30
31     ###################################################
32     #
33     # Ircd - core access
34     #
35
36     # allow ircd_t to fork copies of itself
37     allow ircd_t self : process fork;
38     # Log files - create, read, and append



39     allow ircd_t var_log_t : dir ra_dir_perms;
40     allow ircd_t ircd_log_t : dir ra_dir_perms;
41     allow ircd_t ircd_log_t : file { create ra_file_perms };
42     type_transition ircd_t var_log_t : { file dir } ircd_log_t;
43
44     # Configuration files - read
45     allow ircd_t ircd_conf_t : dir r_dir_perms;
46     allow ircd_t ircd_conf_t : file r_file_perms;
47     allow ircd_t ircd_conf_t : lnk_file { getattr read };
48     dontaudit ircd_t ircd_conf_t : file write;
49
50     # PID file - create, read, and write
51     file_type_auto_trans(ircd_t, var_run_t, ircd_var_run_t, file)
52     allow ircd_t var_t : dir search;
53
54     # /var/lib/ircd files/dirs - create, read, write
55     file_type_auto_trans(ircd_t, var_lib_t, ircd_var_lib_t, file)
56     allow ircd_t ircd_var_lib_t : dir rw_dir_perms;
57
58     # Network access - the ircd daemon is allowed to send
59     # and receive network data to all nodes and ports over
60     # all network interfaces (through the can_network_server
61     # macro). Additionally, it can name_bind to the ircd
62     # port (ircd_port_t).
63     allow ircd_t ircd_port_t:tcp_socket name_bind;
64     can_network_server(ircd_t)
65
66     # use shared libraries
67     uses_shlib(ircd_t)
68
69     # read localization data
70     read_locale(ircd_t)
71
72     # read common directories / files including
73     #    * /etc/resolv.conf (etc_t)
74     #     * proc
75     #     * /dev/null
76     #     * system variables
77     allow ircd_t etc_t : file r_file_perms;
78     allow ircd_t { self proc_t }:dir r_dir_perms;
79     allow ircd_t { self proc_t }:lnk_file { getattr read };
80     allow ircd_t null_device_t:chr_file rw_file_perms;
81     allow ircd_t sysctl_type:dir r_dir_perms;
82     allow ircd_t sysctl_type:file r_file_perms;
83     allow ircd_t sysctl_t:dir search;
84     allow ircd_t sysctl_kernel_t:dir search;
85     allow ircd_t sysctl_kernel_t:file { getattr read };
86
87     #################################################
88     #
89     # Domain Transitions and Role Authorizations
90     #



91
92     role system_r types ircd_t;
93
94     # allow init to start ircd
95     domain_auto_trans(initrc_t, ircd_exec_t, ircd_t)
96
97     # allow sysadm_t to start ircd_t
98     domain_auto_trans(sysadm_t, ircd_exec_t, ircd_t)
99     role_transition sysadm_r ircd_exec_t system_r;
100    # dontaudit use of the sysadm_r terminal
101    dontaudit ircd_t sysadm_devpts_t : chr_file { getattr read write };
102
103    #################################################
104    #
105    # Integrate Into System Policy
106    #
107
108    ifdef(`logrotate.te', `
109        allow logrotate_t ircd_var_run_t:dir search;
110        allow logrotate_t ircd_var_run_t:file { getattr read };
111    ')

Listing 14-12. Example Policy: IRC Daemon File Contexts File (ircd.fc)

1      # ircd labeling policy
2      # file: ircd.fc
3      /usr/bin/ircd         --       system_u:object_r:ircd_exec_t
4      /etc/ircd(/.*)?               system_u:object_r:ircd_conf_t
5      /var/log/ircd(/.*)?           system_u:object_r:ircd_log_t
6      /var/lib/ircd(/.*)?           system_u:object_r:ircd_var_lib_t
7      /var/run/ircd(/.*)?           system_u:object_r:ircd_var_run_t

Listing 14-13. Reference Policy: IRC Daemon Private Policy File (ircd.te)

1      ########################################
2      #
3      # Reference Policy ircd policy module
4      #
5      # file: ircd.te
6      #
7
8      # Ircd policy module declaration
9      policy_module(ircd, 1.0)
10
11     ########################################
12     #
13     # Type declarations



14     #
15
16     # ircd domain
17     type ircd_t;
18
19     # ircd entrypoint
20     type ircd_exec_t;
21
22     # mark ircd_t as a domain and ircd_exec_t
23     # as an entrypoint into that domain
24     init_daemon_domain(ircd_t, ircd_exec_t)
25
26     # PID file /var/run/ircd.pid
27     type ircd_var_run_t;
28     files_pid_file(ircd_var_run_t)
29
30     # configuration files
31     type ircd_conf_t;
32     files_config_file(ircd_conf_t)
33
34     # log files
35     type ircd_log_t;
36     logging_log_file(ircd_log_t)
37
38     # files and directories under /var/lib/ircd
39     type ircd_var_lib_t;
40     files_type(ircd_var_lib_t)
41
42     ##########################################
43     #
44     # Ircd - core access
45     #
46
47     # allow ircd_t to fork copies of itself
48     allow ircd_t self : process fork;
49
50     # Log files - create, read, and append
51     allow ircd_t ircd_log_t : dir ra_dir_perms;
52     allow ircd_t ircd_log_t : file { create ra_file_perms };
53     logging_log_filetrans(ircd_t, ircd_log_t, file)
54     logging_search_logs(ircd_t)
55
56     # Configuration files - read
57     allow ircd_t ircd_conf_t : dir r_dir_perms;
58     allow ircd_t ircd_conf_t : file r_file_perms;
59     allow ircd_t ircd_conf_t : lnk_file { getattr read };
60     dontaudit ircd_t ircd_conf_t : file write;
61
62     # PID file - create, read, and write
63     allow ircd_t ircd_var_run_t : dir rw_dir_perms;
64     allow ircd_t ircd_var_run_t : file create_file_perms;
65     files_pid_filetrans(ircd_t, ircd_var_run_t, file)



66
67     # /var/lib/ircd files/dirs - create, read, write
68     allow ircd_t ircd_var_lib_t : dir create_dir_perms;
69     allow ircd_t ircd_var_lib_t : file create_file_perms;
70     files_var_lib_filetrans(ircd_t, ircd_var_lib_t, { file dir })
71
72     # Network access - the ircd daemon is allowed to send
73     # and receive network data to all nodes and ports over
74     # all network interfaces. Additionally, it can name_bind
75     # to the ircd port (ircd_port_t)
76     allow ircd_t self : tcp_socket create_stream_socket_perms;
77     corenet_tcp_sendrecv_all_if(ircd_t)
78     corenet_tcp_sendrecv_all_nodes(ircd_t)
79     corenet_tcp_sendrecv_all_ports(ircd_t)
80     corenet_non_ipsec_sendrecv(ircd_t)
81     corenet_tcp_bind_all_nodes(ircd_t)
82     corenet_tcp_bind_ircd_port(ircd_t)
83     sysnet_dns_name_resolve(ircd_t)
84
85     # use shared libraries
86     libs_use_ld_so(ircd_t)
87     libs_use_shared_libs(ircd_t)
88
89     # read localization data
90     miscfiles_read_localization(ircd_t)
91
92     # dontaudit use of the sysadm_r terminal
93     userdom_dontaudit_use_sysadm_ptys(ircd_t)
94
95     # read common directories / files including
96     #    * /etc (search and read)
97     #    * system variables
98     files_search_etc(ircd_t)
99     files_read_etc_files(ircd_t)
100    kernel_read_kernel_sysctls(ircd_t)
101    kernel_read_system_state(ircd_t)
102    kernel_read_all_sysctls(ircd_t)

Listing 14-14. Reference Policy: IRC Daemon Labeling Policy File (ircd.fc)

1      # ircd labeling policy
2      # file: ircd.fc
3      /usr/bin/ircd    --     gen_context(system_u:object_r:ircd_exec_t, s0)
4      /etc/ircd(/.*)?        gen_context(system_u:object_r:ircd_conf_t, s0)
5      /var/log/ircd(/.*)?    gen_context(system_u:object_r:ircd_log_t, s0)
6      /var/lib/ircd(/.*)?    gen_context(system_u:object_r:ircd_var_lib_t, s0)
7      /var/run/ircd(/.*)?    gen_context(system_u:object_r:ircd_var_run_t, s0)



Listing 14-15. Reference Policy: IRC Daemon External Interface File
(ircd.if)

1      ## <summary>IRC daemon</summary>
2
3      ########################################
4      ## <summary>
5      ##        Read IRC daemon log files.
6      ## </summary>
7      ## <param name="domain">
8      ##        Domain allowed access.
9      ## </param>
10     #
11     interface(`irc_read_log',`
12        gen_require(`
13          type ircd_log_t;
14        ')
15
16        files_search_var($1)
17        logging_search_logs($1)
18        allow $1 ircd_log_t:dir search_dir_perms;
19        allow $1 ircd_log_t:file r_file_perms;
20    ')



14.7. Summary

As in all modern enterprises, writing policy modules is a skill best learned through practice.

The basic steps for writing a new policy module, whether it be for the example policy or the
reference policy, are as follows:

Prepare and plan:

Gather information about the application.

Create a test configuration.

Specify security goals.

1.

Create an initial policy module:

Create the basic module files.

Declare our module's types.

Allow initial restrictive access.

Allow domain transitions and role access.

Integrate into system policy.

Create labeling policy.

Apply the policy.

2.

Test and analyze the policy:

Functional test the policy module.

Analyze the policy modules against our security goals.

3.

In general, we iterate among the steps until we achieve the policy module we desire.
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This appendix provides instructions about how to obtain the sample policy source files discussed in
this book. All the policies are freely available for use. Community support is available from many
places, but the easiest methods are the SELinux mailing lists (see Appendix B, "Participation and
Further Information").



A.1. Example Policy

The example policy (both strict and targeted) we discuss in Chapter 11, "Original Example Policy," is
available from several sources. At the time of this writing, a version of the example policy was still
available from the upstream SELinux source tree, but the National Security Agency (NSA) has
announced it is planning to drop support soon in favor of the reference policy. Red Hat supports the
example policy in both the Fedora Core 4 (FC4) and the Red Hat Enterprise Linux version 4 (RHEL4).
(Fedora Core 5 [FC5] is moving to the reference policy.)

Note

The examples throughout the book are based on the Fedora Core strict policy, specifically
version 1.27.1-2.6. For the purposes of the examples and exercises, however, any version
of the FC4 strict policy should work.

A.1.1. Example Policy from Upstream SELinux Sites

The NSA example policy is the ancestor of just about every policy that has been developed. The Red
Hat/Fedora policies and the reference policy all trace their origins to the NSA policy. It was meant to
provide an example of a full system policy that developers could use as a starting point when writing
their own policies. NSA has recently stopped supporting the example policy on their Web site (in favor
of the reference policy). Historical versions are available at the following site:

www.nsa.gov/selinux/code/download0.cfm

These historical policies most likely require some tweaking. We recommend installing the packages
for the specific Fedora or RHEL releases.

The NSA SELinux project tree, including the NSA example policy, are also available via cvs from the
SELinux open source site. To browse the tree or download the package, access the following site:

http://selinux.sourceforge.net/

Several other Linux distributions support SELinux. At one time, they all had policies based on the NSA
example. They have been at least minimally tweaked to conform to the specific distributions. The
best place to find pointers to different Linux distributions that support SELinux is at the SELinux open
source site previously mentioned.

http://selinux.sourceforge.net/


A.1.2. Strict and Targeted Policies for Fedora Core 4

For most of this book, we used examples from the strict example policy for FC4. However, the
targeted policy is installed as the default policy for a FC4 system. Only the prebuilt policy (without the
policy source) is installed in most cases. The targeted policy is installed in /etc/selinux/targeted/.
During installation if you choose the "complete" install option when deciding on which packages to
install, both the strict and targeted policies are installed with their respective policy source files.

If you install only the targeted policy, you have several simple options for installing the targeted
source and the strict policy and its source files. The most straightforward way is to use the yum utility
as the system administrator as follows. First find out the exact package you have on your system and
what is available:

# yum list | grep -i selinux-policy
selinux-policy-targeted.noarch       1.27.1-2.6      installed
selinux-policy-strict.noarch         1.27.1-2.16     updates-released
selinux-policy-strict-sources.noarch 1.27.1-2.16     updates-released
selinux-policy-targeted.noarch       1.27.1-2.16     updates-released
selinux-policy-targeted-sources.noarch   1.27.1-2.16 updates-released

On our system, we have the targeted policy installed without the source. To install the source and the
strict policy with source, we run the following:

# yum install selinux-policy-targeted-sources

and

# yum install selinux-policy-strict-sources

Note that when we installed the strict source files, the prebuilt policy was installed, too, because yum
recognizes that the sources package is dependent on the policy package. All these policies are
installed into the standard Fedora policy location, /etc/selinux/. To switch over to the strict policy,
you can use the administrative tool mentioned in Chapter 13, "Managing an SELinux System," or you
can perform the switch to the strict policy by hand if you change the SELINUXTYPE line in
/etc/selinux/config to strict and touch /.autorelabel. In either case, you must then reboot the
system to ensure all processes and files are labeled correctly.

You can also obtain and install the policy packages from the Fedora installation CDs. Disc 1 contains
the packages for the prebuilt policies (that is, all the policy files except the policy source files) for
both the targeted and strict policies. If you put Disc 1 in your drive, you should see it under
/media/cdrecorder or /media/cdrom, or mount it as root with something like mount /dev/cdrom
/media/cdrom (depending on your hardware configuration). The package files are under the following:

./Fedora/RPMS/
selinux-policy-strict-1.23.16-6.noarch.rpm
selinux-policy-targeted-1.23.16-6.noarch.rpm

The policy source RPMs are on Disc 4:



/Fedora/RPMS/
selinux-policy-strict-sources-1.23.16-6.noarch.rpm
selinux-policy-targeted-sources-1.23.16-6.noarch.rpm

You install them with the standard rpm command. (Remember, however, that the sources packages
depend on the policy packages, so you must install the policy packages before you install the
respective sources packages.) For example, you can install the strict policy with source (rpm output
removed for brevity) as follows:

# rpm -ivh selinux-policy-strict-1.23.16-6.noarch.rpm

# rpm -ivh selinux-policy-targeted-sources-1.23.16-6.noarch.rpm

After you install the policies with rpm, if you want to switch to the strict policy, you still need to
"activate" it in the same way as described previously for yum.

A.1.3. Red Hat Enterprise Linux 4 (RHEL4)

The RHEL4 default policy, for all flavors (that is, AS, ES, and WS), is the targeted policy based on the
example policy. The strict policy is not included or supported. The prebuilt targeted policy is on Disc 2
of the installation CDs. You can find it by mounting Disc 2 under the following:

./RedHat/RPMS/selinux-policy-targeted-1.17.30-2.52.1.noarch.rpm

The source package for the targeted policy is on Disc 4:

./RedHat/RPMS/selinux-policy-targeted-sources-1.17.30-2.52.1.noarch.rpm

You can install the packages by using the rpm -ivh package-name.rpm command. You can install the
strict policy using the strict packages from Fedora Core (see above). You switch the system over to
the strict policy in the same manner as described for FC4. Note that because the strict policy is not
supported for RHEL4, you might need to tweak the policy to get it to work properly in your
configuration. We recommend initially setting the SELINUX line to permissive in /etc/selinux/config
until you ensure a clean boot.

A.1.4. Fedora Core Experimental and Test Policies

You can find the most recently patched policies and test and other experimental policies (for
example, multilevel security [MLS] and multicategory security [MCS]) at Dan Walsh's Red Hat site:

ftp://people.redhat.com/dwalsh/SELinux/

These tend to be new and minimally tested.





A.2. Reference Policy

Chapter 12, "Reference Policy," discussed the reference policy, which we expect to be the primary
policy source for the future. At the time of this writing, Red Hat used reference policy for FC5. You
can use the reference policy to build strict or targeted policies, with or without the optional MLS
features. Reference policy supports RHEL4.

Instructions for installing and using reference policy on RHEL4 are complicated because they involve
upgrading several packages and libraries to support the latest policy language. You can find
instructions on how to do this and where to find prebuilt RPMs for the required packages and libraries
in the INSTALL file in the top-level directory of the reference policy tree.

A.2.1. Primary Reference Policy

The reference policy is primarily developed by Tresys Technology as an open source project. It is
available via its open source project site:

http://serefpolicy.sourceforge.net/

The reference policy supports loadable modules and the traditional monolithic policy build (all from
the same source tree). At this time, loadable modules are still in development, but you can find up-
to-date information and instructions on the policy server project open source site:

http://sepolicy-server.sourceforge.net/

A.2.2. Red Hat's Fedora Core 5 Reference Policy

Several versions of reference policy are available for FC5, including a targeted, strict, and MLS policy
package. All of these are based on the primary reference policy tree. You can find the prebuilt policy
RPMs at the following site:

http://download.fedora.redhat.com/pub/fedora/linux/core/5/i386/os/Fedora/RPMS/

At the time of this writing, the relevant files were called selinux-policy-*.

The previous RPMs install as policy modules. You will find the policy packages (that is, the .pp files)
under /usr/share/selinux/, in the associated policy directory (targeted, strict, and so on).

There is no "sources" RPM (that is, a package that automatically installs the policy source files), but
you can find an src RPM (that is, a package that contains the sources to build the policy but does not
automatically install the sources). You can find the src RPM at the following site:

http://serefpolicy.sourceforge.net/
http://sepolicy-server.sourceforge.net/
http://download.fedora.redhat.com/pub/fedora/linux/core/5/i386/os/Fedora/RPMS/


http://download.fedora.redhat.com/pub/fedora/linux/core/5/source/SRPMS/

At the time of this writing, the package name was selinux-policy-2.2.23-15.src.rpm. The src RPM
contains a reference policy source tree and a patch file that Red Hat provides for the current version
of FC5.

It takes some knowledge to extract the policy sources from an src RPM. You can always use the
primary reference policy (as described previously) rather than the Red Hat packages. It will also
install and build usable policies on FC5.

http://download.fedora.redhat.com/pub/fedora/linux/core/5/source/SRPMS/
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This appendix identifies where to look for past, current, and future information and discusses how to
participate in the development of SELinux and SELinux policies. As with any current technology,
SELinux is still evolving, and staying abreast is important.



B.1. The SELinux Mail List

The best place to find out about SELinux development and to ask questions is the SELinux mailing
list. To subscribe to the SELinux mailing list, send a message to the following address:

majordomo@tycho.nsa.gov.

Put subscribe selinux as the body of the message. You can find more information about the mailing
list on the National Security Agency (NSA) Web site:

www.nsa.gov/selinux/

Note that although the site refers to it as a "Developers List," new people are welcome, and the
discussions extend to many SELinux subjects. There are archives of the mailing list both at NSA's
Web site and at the following site:

http://marc.theaimsgroup.com/?l=selinux&r=1

http://marc.theaimsgroup.com/?l=selinux&r=1


B.2. The Annual SELinux Symposium

Since 2004, an annual conference has been held as a platform for exchanging ideas and presenting
new developments and applications of SELinux. The conference is held in the Baltimore,
Maryland/Washington, D.C. area at the end of February or the beginning of March. The Web site for
the symposium is at this address:

www.selinux-symposium.org/

The Web site contains information about the upcoming conference and electronic versions of past
presentations.



B.3. The NSA The

NSA Web site, www.nsa.gov/selinux/, is one of the best places to find information. You can find many
of the original architecture papers, some of which have been updated, more current papers, and
pointers to the upstream versions of current packages and libraries. There are also pointers to the
SELinux mailing list, an FAQ, and other items of interest such as a list of major features that need to
be done.



B.4. Tresys Technology

The Tresys Technology Web site contains many useful and informative pages. You can access the
main page at this address:

www.tresys.com/selinux/

This page links to information on the SeTools package, information on the Tresys SELinux policy
course (including up-to-date versions of all the slides), a current object class, and a permissions
information page similar to Appendix C, "Object Classes and Permissions." This site also include
information about Tresys' enhancements to SELinux, such as conditional policy, loadable modules,
reference policy, an SELinux policy development and integration IDE, and the SELinux policy server.



B.5. Open Source Projects

The following are links to some SELinux-related projects. These open source projects welcome and
encourage community participation and contribution. Be aware, however, that because of the nature
of open source projects, they might have moved by the time this book is published.

Main SELinuxhttp://sourceforge.net/projects/selinux

Reference policyhttp://serefpolicy.sourceforge.net

SELinux policy management infrastructure (SELinux policy server and loadable
modules)http://sepolicy-server.sourceforge.net/

http://sourceforge.net/projects/selinux
http://serefpolicy.sourceforge.net
http://sepolicy-server.sourceforge.net/


B.6. The SELinux IRC Channel

There is an SELinux IRC channel. Use your favorite IRC chat client, point to irc.freenode.net, and join
#selinux. It is a fairly active channel, and there is usually a knowledgeable person around willing to
answer any questions you might have. Features, bug fixes, and enhancements are often discussed
here before they migrate to the mailing list.



B.7. The Fedora Core Site

Red Hat maintains a large site where you can find everything from ISO images of all the Fedora
releases and RPM packages to loads of documentation on Fedora and SELinux. The main site is here:

http://fedora.redhat.com/

This site is considering a switch to a new home:

http://fedoraproject.org/

The new site currently has a wiki site set up with lots of useful information. Red Hat/Fedora also
maintains several Fedora Core-specific mailing lists, a list of which you can find here:

http://fedoraproject.org/wiki/Communicate

This list includes a Fedora SELinux mailing list that you can join from this page:

www.redhat.com/mailman/listinfo/fedora-selinux-list

http://fedora.redhat.com/
http://fedoraproject.org/
http://fedoraproject.org/wiki/Communicate


B.8. Hardened Gentoo

Hardened Gentoo was one of the first Linux distributions to include SELinux. Hardened Gentoo has
excellent documentation on SELinux and documentation on how to integrate other security packages
into an SELinux-Gentoo system. The main Hardened Gentoo page is here:

www.gentoo.org/proj/en/hardened

A page on this site is specifically for SELinux.



B.9. Other Related Security Information

The following are resources that are not SELinux-specific but may be of interest. The Linux Security
Module (LSM) mailing list discusses kernel developments related to the LSM. The LSM is how SELinux
hooks into the Linux kernel. You can join the LSM mailing list from this site:

http://mail.wirex.com/mailman/listinfo/linux-security-module

An audit framework was added in the Linux 2.6 kernel series that greatly extends Linux audit
capabilities. You can join the Linux audit discussion mailing list here:

www.redhat.com/mailman/listinfo/linux-audit

Several SELinux/Linux Common Criteria evaluations are ongoing at the time of this writing. For the
current status of those evaluations, refer to the following Web site:

http://niap.nist.gov/cc-scheme/

The page contains links to "Validated Products" that have passed evaluation and "Products in
Evaluation."

http://mail.wirex.com/mailman/listinfo/linux-security-module
http://niap.nist.gov/cc-scheme/
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This appendix provides a detailed summary and listing of all object classes and permissions supported
by the kernel at the time of this writing. Be aware that object classes and permissions are
occasionally changed and added. Some object classes and permissions listed are no longer used.
They remain defined primarily for compatibility reasons. Their use in a policy would have no effect on
a system with an up-to-date kernel. You can find a maintained list of object classes and permissions
at www.tresys.com/selinux. You can also use the National Security Agency (NSA) technical report
"Implementing SELinux as a LSM," available at www.nsa.gov/selinux/info/docs.cfm.



C.1. Common Permission Sets

Some object classes share sets of permissions. These permission sets are defined as common
permissions and are assigned a common permission identifier in the policy. They are then "inherited"
by kernel object classes when the common permission identifier is assigned to the class. Thus, they
are "common permissions" defined for multiple class definitions. Allowing the same permission sets
for multiple object classes make using multiple object classes in a single policy rule possible. See
Chapter 4, "Object Classes and Permissions," for more information on how object classes and
permissions are defined.

Note that it may be a bit confusing in that the identifiers used for common permission sets are also
the identifiers used to name some kernel object classes. For example, there is a common set of
permissions called "file," and there is a kernel object class also called "file," which inherits the
common "file" permissions. The common permission and object class namespaces are separate, and
the common permission file and the object class file are distinct entities; be careful not to confuse
the two.

In the following tables, we list the three common permissions and their permissions sets that are
currently used by the kernel. The three common permission sets are as follows:

• file Common permissions
used by filesystem
object classes

• socket Common permissions
used by various
socket classes

• ipc Common permissions
used by System V
interprocess
communication (IPC)
classes

Table C-1. Common Permissions File

Permission Description

append Append to object's contents (that is, opened with O_APPEND flag).

create Create new object of this class.

execute Execute the object.



Permission Description

getattr Get attributes for object, such as access mode (for example, stat, some
ioctls).

ioctl ioctl(2) system call requests on the object not addressed by other
permissions.

link Create hard link to object.

lock Set and unset object's locks.

mounton Use object as a mount point; typically used for dir object class.

quotaon Allow file to be used as a quota database.

read Read the object's contents.

relabelfrom Change the object's security context from the existing type.

relabelto Change the object's security context to the new type.

rename Rename any hard links to the object.

setattr Change attributes for object such as access mode (for example, chmod, some
ioctls).

swapon Deprecated, allowed the object to be used for paging/swapping space.

unlink Remove hard link (delete the file if no other hard links are present).

write Write the object's contents.

Table C-2. Common Permissions socket

Permission Description

accept Accept a connection to the socket.

append Write or append socket file contents.

bind Bind name to the socket.

connect Initiate connection from the socket.

create Create new socket file.

getattr Get file attributes for socket file, such as access mode (for example, stat,
some ioctls).

getopt Get socket options.

ioctl I/O control system call requests on the socket not addressed by other
permissions.

listen Listen for connections to the socket.

getattr Get attributes for object, such as access mode (for example, stat, some
ioctls).

ioctl ioctl(2) system call requests on the object not addressed by other
permissions.

link Create hard link to object.

lock Set and unset object's locks.

mounton Use object as a mount point; typically used for dir object class.

quotaon Allow file to be used as a quota database.

read Read the object's contents.

relabelfrom Change the object's security context from the existing type.

relabelto Change the object's security context to the new type.

rename Rename any hard links to the object.

setattr Change attributes for object such as access mode (for example, chmod, some
ioctls).

swapon Deprecated, allowed the object to be used for paging/swapping space.

unlink Remove hard link (delete the file if no other hard links are present).

write Write the object's contents.

Table C-2. Common Permissions socket

Permission Description

accept Accept a connection to the socket.

append Write or append socket file contents.

bind Bind name to the socket.

connect Initiate connection from the socket.

create Create new socket file.

getattr Get file attributes for socket file, such as access mode (for example, stat,
some ioctls).

getopt Get socket options.

ioctl I/O control system call requests on the socket not addressed by other
permissions.



Permission Description

listen Listen for connections to the socket.

lock Set and unset socket file locks.

name_bind Use port or file; for AF_INET sockets, defines a relationship between a socket
object and its port number; no longer applied to UNIX domain sockets (post
Linux Security Module [LSM]).

read Read data received from socket.

recv_mesg Permission required for a socket to receive a message from a port.

recvfrom Currently unused (a legacy of older network checks).

relabelfrom Change the socket's security context from the existing type.

relabelto Change the socket's security context to the new type.

send_msg Permission required to send a message from a socket to a port.

sendto Send data to UNIX domain sockets.

setattr Change file attributes for socket file, such as access mode (for example, chmod,
some ioctls).

setopt Set socket options.

shutdown Shutdown connection.

write Write or append to the socket.

Table C-3. Common Permissions ipc

Permission Description

associate Get the ID of an IPC object.

create Create an IPC object.

destroy Destroy an IPC object.

getattr Get IPC object attributes.

read Read or receive data from an IPC object.

setattr Change IPC object attributes.

unix_read Read; required by IPC operations.

unix_write Write or change; required by IPC operations.

write Write, send message, or change the value of an IPC
object.

listen Listen for connections to the socket.

lock Set and unset socket file locks.

name_bind Use port or file; for AF_INET sockets, defines a relationship between a socket
object and its port number; no longer applied to UNIX domain sockets (post
Linux Security Module [LSM]).

read Read data received from socket.

recv_mesg Permission required for a socket to receive a message from a port.

recvfrom Currently unused (a legacy of older network checks).

relabelfrom Change the socket's security context from the existing type.

relabelto Change the socket's security context to the new type.

send_msg Permission required to send a message from a socket to a port.

sendto Send data to UNIX domain sockets.

setattr Change file attributes for socket file, such as access mode (for example, chmod,
some ioctls).

setopt Set socket options.

shutdown Shutdown connection.

write Write or append to the socket.

Table C-3. Common Permissions ipc

Permission Description

associate Get the ID of an IPC object.

create Create an IPC object.

destroy Destroy an IPC object.

getattr Get IPC object attributes.

read Read or receive data from an IPC object.

setattr Change IPC object attributes.

unix_read Read; required by IPC operations.

unix_write Write or change; required by IPC operations.

write Write, send message, or change the value of an IPC
object.





C.2. Object Classes and Defined Permission Sets

The following tables show all the kernel object classes and the permissions defined for each object
class. These permissions correspond to permissions required by the kernel's LSM hooks and are used
as the object class/permission specifications in policy statements. Each object class's permission table
lists any inherited/common permissions first and then any permissions that are unique to that class.
The classes are grouped alphabetically within the following four categories:

• File related Object classes relating to filesystem objects

•
Network/socket

Object classes associated with network access or sockets

• IPC System V IPC object classes

• Miscellaneous Other object classes not in the previous three categories

C.2.1. File-Related Object Classes

File-related object classes represent many of the system objects that are familiar to a Linux user.
Almost all of them inherit the common file permission set. Some classes also have unique
permissions that either relate specifically to SELinux operations or are extensions that were added to
the normal Linux permissions (for example, a permission to add a file to a directory). The object
classes in this group are listed in Table C-4.

Table C-4. Summary of File-Related Object Classes

Object Class Description Permission
Definitions

blk_file Block files Table C-5

chr_file Character files Table C-6

dir Directories Table C-7

fd File descriptors Table C-8

fifo_file Named pipes Table C-9

file Ordinary files Table C-10

filesystem Filesystem (that is, an actual partition) Table C-11

lnk_file Symbolic links Table C-12



Object Class Description Permission
Definitions

sock_file UNIX domain sockets Table C-13

Table C-5. blk_file Permissions

Permissions Description

file common
permissions

See Table C-1.

Table C-6. chr_file Permissions

Permissions Description

file common permissions See Table C-1.

enTRypoint Added only to make execmod permission index map to the
same index as the file execmod permission (see execmod).

execmod Added to allow certain applications to make executable
mappings of character device memory.

execute_no_trans Added only to make execmod permission index map to the
same index as the file execmod permission (see execmod).

Table C-7. dir Permissions

Permissions Description

file common permissions See Table C-1.

add_name Add a hard link (name) to the directory (for example,
creating or moving a file into a directory).

remove_name Remove a hard link from the directory (for example,
remove or move a file from a directory).

reparent Change directory's parent directory.

rmdir Remove the directory object.

sock_file UNIX domain sockets Table C-13

Table C-5. blk_file Permissions

Permissions Description

file common
permissions

See Table C-1.

Table C-6. chr_file Permissions

Permissions Description

file common permissions See Table C-1.

enTRypoint Added only to make execmod permission index map to the
same index as the file execmod permission (see execmod).

execmod Added to allow certain applications to make executable
mappings of character device memory.

execute_no_trans Added only to make execmod permission index map to the
same index as the file execmod permission (see execmod).

Table C-7. dir Permissions

Permissions Description

file common permissions See Table C-1.

add_name Add a hard link (name) to the directory (for example,
creating or moving a file into a directory).

remove_name Remove a hard link from the directory (for example,
remove or move a file from a directory).

reparent Change directory's parent directory.



Permissions Description

rmdir Remove the directory object.

search Needed to find an object contained in the directory or for a
directory object in the path to another object. Does not
allow directory listing, which is controlled by read.

Table C-8. fd Permissions

Permissions Description

use Permission to use the file descriptor (for example, reading or writing
to a file descriptor inherited from another process). Appropriate
permissions on the underlying object are still required. (For example,
successfully reading from a file using a file descriptor requires use
permission on the fd object and read permission on the file object.)

Table C-9. fifo_file Permissions

Permissions Description

file common
permissions

See Table C-1.

Table C-10. file Permissions

Permissions Description

file common permissions See Table C-1.

enTRypoint File can be used as the entry point of a domain via a
domain transition.

execmod Make execute a file mapping that has been modified by
copy-on-write.

execute_no_trans Execute the file in the calling process' domain (that is,
without a domain transition).

Table C-11. filesystem Permissions

rmdir Remove the directory object.

search Needed to find an object contained in the directory or for a
directory object in the path to another object. Does not
allow directory listing, which is controlled by read.

Table C-8. fd Permissions

Permissions Description

use Permission to use the file descriptor (for example, reading or writing
to a file descriptor inherited from another process). Appropriate
permissions on the underlying object are still required. (For example,
successfully reading from a file using a file descriptor requires use
permission on the fd object and read permission on the file object.)

Table C-9. fifo_file Permissions

Permissions Description

file common
permissions

See Table C-1.

Table C-10. file Permissions

Permissions Description

file common permissions See Table C-1.

enTRypoint File can be used as the entry point of a domain via a
domain transition.

execmod Make execute a file mapping that has been modified by
copy-on-write.

execute_no_trans Execute the file in the calling process' domain (that is,
without a domain transition).

Table C-11. filesystem Permissions



Permissions Description

associate Allow file-related object classes with given types to be
stored on the filesystem.

getattr Needed to statfs a filesystem.

mount Needed to mount the superblock of a filesystem.

quotaget Get quota information.

quotamod Modify quota information.

relabelfrom Used to control context mounts.

relabelto Used to control context mounts.

remount Change filesystem mount flags.

transition Deprecated permission from pre-LSM SELinux, not
used.

unmount Unmount.

Table C-12. lnk_file Permissions

Permissions Description

file common
permissions

See Table C-1.

Table C-13. sock_file
Permissions

Permissions Description

file common
permissions

See Table C-1.

C.2.2. Network and Socket Object Classes

Network and socket object classes represent network resources and sockets. They include the classes
for all types of network socket objects, from raw IP sockets to specialized Netlink sockets. This group
also includes the classes and permissions for network interfaces and nodes. Almost all these object
classes inherit the common permission socket. The object classes in this group are listed in Table C-



14.

Table C-14. Summary of Network and Socket Object Classes

Object Class Description Permission Definitions

association Represents an IPSec security
association.

Table C-15

key_socket Sockets that are of protocol
family PF_KEY, used for key
management in IPSec. This
class was created to distinguish
PF_KEY sockets from general
sockets.

Table C-16

netif A network interface. A domain
must have the appropriate
permissions on a netif object to
send and/or receive packets on
an interface. The domain must
also have the same permissions
for a node object (see node
class), and if the domain is
using a UDP or TCP socket, it
must also have the
corresponding
tcp_socket/udp_socket
permission (that is,
*_send_msg or *_recv_msg) on
the TCP/UDP socket object.

Table C-17

netlink_audit_socket A netlink_audit_socket object is
a netlink socket connection to
the audit service. The socket is
used to list/add/delete filter
rules, get/set status, and so on.

Table C-18

netlink_dnrt_socket Netlink socket to control DECnet
routing.

Table C-19

netlink_firewall_socket Netlink socket to create
userspace firewall filters; copy
packets from kernel, send
accept or reject packet verdict
to kernel.

Table C-20

netlink_ ip6fw_socket Netlink socket to create IPv6
userspace firewall filters.

Table C-21



Object Class Description Permission Definitions

netlink_kobject_uevent_socket Netlink socket to send kernel
event notifications to userspace
(for example, processor
temperature detection).

Table C-22

netlink_nflog_socket Netlink socket to receive
Netfilter logging messages in
userspace.

Table C-23

netlink_route_socket Netlink socket to control and
mange network resources such
as the routing table and IP
address from userspace.

Table C-24

netlink_selinux_socket Netlink socket that receives
userspace notification messages
on SELinux events (for
example, policy load, enforce
mode toggle, and Boolean
change).

Table C-25

netlink_socket Netlink socket to control all
Netlink sockets for which there
is not yet a specific SELinux
class defined.

netlink_tcpdiag_socket Netlink socket to monitor TCP
connections.

Table C-27

netlink_xfrm_socket Netlink socket to get, maintain,
set IPsec parameters such as
security associations, security
policies, and security parameter
indexes.

Table C-28

node Represents a host IP address or
range of addresses. A domain
must have send or receive
permission on a node object to
send or receive data on a
particular IP address. The
domain must also have send or
receive permission on the
network interface object
associated with the address
(see netif class). If the domain
uses a UDP or TCP socket, it
must also have the
corresponding
tcp_socket/udp_socket

permission (that is,
*_send_msg or *_recv_msg) on

Table C-29

netlink_kobject_uevent_socket Netlink socket to send kernel
event notifications to userspace
(for example, processor
temperature detection).

Table C-22

netlink_nflog_socket Netlink socket to receive
Netfilter logging messages in
userspace.

Table C-23

netlink_route_socket Netlink socket to control and
mange network resources such
as the routing table and IP
address from userspace.

Table C-24

netlink_selinux_socket Netlink socket that receives
userspace notification messages
on SELinux events (for
example, policy load, enforce
mode toggle, and Boolean
change).

Table C-25

netlink_socket Netlink socket to control all
Netlink sockets for which there
is not yet a specific SELinux
class defined.

netlink_tcpdiag_socket Netlink socket to monitor TCP
connections.

Table C-27

netlink_xfrm_socket Netlink socket to get, maintain,
set IPsec parameters such as
security associations, security
policies, and security parameter
indexes.

Table C-28

node Represents a host IP address or
range of addresses. A domain
must have send or receive
permission on a node object to
send or receive data on a
particular IP address. The
domain must also have send or
receive permission on the
network interface object
associated with the address
(see netif class). If the domain
uses a UDP or TCP socket, it
must also have the
corresponding
tcp_socket/udp_socket

permission (that is,
*_send_msg or *_recv_msg) on

Table C-29



Object Class Description Permission Definitions *_send_msg or *_recv_msg) on
the socket object.

packet_socket Raw sockets where the protocol
is implemented in userspace.
The packets for this type of
object are sent at OSI Layer 2.
A domain must also have the
NET_RAW capability permission
to use a packet_socket object.

Table C-30

rawip_socket IP sockets that are neither TCP
nor UDP.

Table C-31

socket Any socket type for which there
is no specific class defined for
its protocol family. SELinux, as
of policy version 19, defines
socket classes for the following
protocol families: unix, inet,
inet6, netlink, packet, and key.

Table C-32

tcp_socket A TCP socket. A domain also
needs tcp_recv and/or tcp_send
on both the associated node
and netif objects to
receive/send packets (in
addition to the
recv_msg/send_msg permission
on the tcp_socket object).

Table C-33

udp_socket A UDP socket. A domain also
needs udp_recv and/or
udp_send on both the
associated node and netif
objects to receive/send packets
(in addition to the
recv_msg/send_msg permission
on the udp_socket object).

Table C-34

unix_dgram_socket IPC datagram sockets on a local
machine. The socket allows for
passing credentials (PID, UID,
and GID) for authentication. If
any of the credentials are not
the same as the process,' the
process (that is, its domain)
must also have the sys_admin,
setuid, and/or setgid capability,
respectively.

Table C-35

unix_stream_socket IPC stream sockets on a local
machine. The socket allows for
passing credentials (PID, UID,

Table C-36

*_send_msg or *_recv_msg) on
the socket object.

packet_socket Raw sockets where the protocol
is implemented in userspace.
The packets for this type of
object are sent at OSI Layer 2.
A domain must also have the
NET_RAW capability permission
to use a packet_socket object.

Table C-30

rawip_socket IP sockets that are neither TCP
nor UDP.

Table C-31

socket Any socket type for which there
is no specific class defined for
its protocol family. SELinux, as
of policy version 19, defines
socket classes for the following
protocol families: unix, inet,
inet6, netlink, packet, and key.

Table C-32

tcp_socket A TCP socket. A domain also
needs tcp_recv and/or tcp_send
on both the associated node
and netif objects to
receive/send packets (in
addition to the
recv_msg/send_msg permission
on the tcp_socket object).

Table C-33

udp_socket A UDP socket. A domain also
needs udp_recv and/or
udp_send on both the
associated node and netif
objects to receive/send packets
(in addition to the
recv_msg/send_msg permission
on the udp_socket object).

Table C-34

unix_dgram_socket IPC datagram sockets on a local
machine. The socket allows for
passing credentials (PID, UID,
and GID) for authentication. If
any of the credentials are not
the same as the process,' the
process (that is, its domain)
must also have the sys_admin,
setuid, and/or setgid capability,
respectively.

Table C-35

unix_stream_socket IPC stream sockets on a local
machine. The socket allows for
passing credentials (PID, UID,

Table C-36



Object Class Description Permission Definitions passing credentials (PID, UID,
and GID) for authentication. If
any of the credentials are not
the same as the process,' the
process (that is, its domain)
must also have the sys_admin,
setuid, and/or setgid capability,
respectively.

Table C-15. association Permissions

Permissions Description

recvfrom Receive packets using an IPSec security
association.

sendto Send packets using an IPSec security
association.

Table C-16. key_socket Permissions

Permissions Description

socket common
permissions

See Tablte C-2.

Table C-17. netif Permissions

Permissions Description

rawip_recv Receive raw IP packet via the
network interface.

rawip_send Send raw IP packet via the network
interface.

tcp_receive Receive TCP packet via the network
interface.

tcp_send Send TCP packet via the network
interface.

passing credentials (PID, UID,
and GID) for authentication. If
any of the credentials are not
the same as the process,' the
process (that is, its domain)
must also have the sys_admin,
setuid, and/or setgid capability,
respectively.

Table C-15. association Permissions

Permissions Description

recvfrom Receive packets using an IPSec security
association.

sendto Send packets using an IPSec security
association.

Table C-16. key_socket Permissions

Permissions Description

socket common
permissions

See Tablte C-2.

Table C-17. netif Permissions

Permissions Description

rawip_recv Receive raw IP packet via the
network interface.

rawip_send Send raw IP packet via the network
interface.

tcp_receive Receive TCP packet via the network
interface.



Permissions Description

tcp_send Send TCP packet via the network
interface.

udp_recv Receive UDP packet via the network
interface.

udp_send Send UDP packet via the network
interface.

Table C-18. netlink_audit_socket Permissions

Permissions Description

socket common permissions See Table C-2.

nlmsg_read Used to get the audit system status.

nlmsg_readpriv List all auditing rules.

nlmsg_relay Send userspace audit messages to the kernel audit
system.

nlmsg_write Used to set audit system parameters.

Table C-19. netlink_dnrt_socket
Permissions

Permissions Description

socket common
permissions

See Table C-2.

Table C-20. netlink_firewall_socket Permissions

Permissions Description

socket common
permissions

See Table C-2.

nlmsg_read Not used.

nlmsg_write Write control message to firewall.

tcp_send Send TCP packet via the network
interface.

udp_recv Receive UDP packet via the network
interface.

udp_send Send UDP packet via the network
interface.

Table C-18. netlink_audit_socket Permissions

Permissions Description

socket common permissions See Table C-2.

nlmsg_read Used to get the audit system status.

nlmsg_readpriv List all auditing rules.

nlmsg_relay Send userspace audit messages to the kernel audit
system.

nlmsg_write Used to set audit system parameters.

Table C-19. netlink_dnrt_socket
Permissions

Permissions Description

socket common
permissions

See Table C-2.

Table C-20. netlink_firewall_socket Permissions

Permissions Description

socket common
permissions

See Table C-2.

nlmsg_read Not used.

nlmsg_write Write control message to firewall.



Table C-21. netlink_ip6fw_socket Permissions

Permissions Description

socket common
permissions

See Table C-2.

nlmsg_read Not used.

nlmsg_write Write control message to firewall.

Table C-22.
netlink_kobject_uevent_socket

Permissions

Permissions Description

socket common
permissions

See Table C-2.

Table C-23. netlink_nflog_socket
Permissions

Permissions Description

socket common
permissions

See Table C-2.

Table C-24. netlink_route_socket Permissions

Permissions Description

socket common
permissions

See Table C-2.

nlmsg_read Read kernel routing table.

nlmsg_write Write routing information to routing table.



Table C-25. netlink_selinux_socket
Permissions

Permissions Description

socket common
permissions

See Table C-2.

Table C-26. netlink_socket
Permissions

Permissions Description

socket common
permissions

See Table C-2.

Table C-27. netlink_tcpdiag_socket Permissions

Permissions Description

socket common
permissions

See Table C-2.

nlmsg_read Request kernel TCP parameters.

nlmsg_write Currently unused.

Table C-28. netlink_xfrm_socket Permissions

Permissions Description

socket common
permissions

See Table C-2.

nlmsg_read Request IPsec configuration data.

nlmsg_write Set IPsec configuration data.

Table C-29. node Permissions



Permissions Description

enforce_dest This permission is deprecated. It was used in an extended
socket API in previous versions of SELinux.

rawip_recv Receive raw IP packet from the node.

rawip_send Send raw IP packet to the node.

tcp_receive Receive TCP packet from the node.

tcp_send Send TCP packet to the node.

udp_recv Receive UDP packet from the node.

udp_send Send UDP packet to the node.

Table C-30. packet_socket
Permission

Permissions Description

socket common
permissions

See Table C-2.

Table C-31. rawip_socket Permissions

Permissions Description

socket common
permissions

See Table C-2.

node_bind Ability to bind to a node.

Table C-32. socket Permissions

Common Permissions
(socket)

Description

socket common
permissions

See Table C-2.



Table C-33. tcp_socket Permissions

Permissions Description

socket common
permissions

See Table C-2.

acceptfrom Deprecated, not used.

connectto Deprecated, not used.

name_connect Connect to a specific port number.

newconn Deprecated, not used.

node_bind Ability to bind to a node.

Table C-34. udp_socket Permissions

Permissions Description

socket common
permissions

See Table C-2.

node_bind Ability to bind to a node.

Table C-35. unix_dgram_socket
Permissions

Permissions Description

socket common
permissions

See Table C-2.

Table C-36. unix_stream_socket Permissions

Permissions Description

socket common
permissions

See Table C-2.

acceptfrom Deprecated, not used.

connectto Connect to server socket.



Permissions Description

newconn Deprecated, not used.

C.2.3. System V IPC-Related Object Classes

System V IPC-related object classes are for those resources that support System V IPC objects such
as message queues, semaphores, and shared memory. Most of these classes inherit the common
permission ipc. The object classes in this group are listed in Table C-37.

Table C-37. Summary of IPC-Related Object Classes

Object Class Description Permission
Definitions

ipc Deprecated; no longer used. Table C-38

msg Messages within a message queue. Table C-39

msgq Message queues. Table C-40

sem Semaphores. Table C-41

shm Shared memory segment. Table C-42

Table C-38. ipc Permissions

Permissions Description

ipc common permissions See Table C-3. (Note that ipc object class is no
longer used.)

Table C-39. msg Permissions

Permissions Description

receive Remove a message from a
queue.

send Add a message to a queue.

newconn Deprecated, not used.

C.2.3. System V IPC-Related Object Classes

System V IPC-related object classes are for those resources that support System V IPC objects such
as message queues, semaphores, and shared memory. Most of these classes inherit the common
permission ipc. The object classes in this group are listed in Table C-37.

Table C-37. Summary of IPC-Related Object Classes

Object Class Description Permission
Definitions

ipc Deprecated; no longer used. Table C-38

msg Messages within a message queue. Table C-39

msgq Message queues. Table C-40

sem Semaphores. Table C-41

shm Shared memory segment. Table C-42

Table C-38. ipc Permissions

Permissions Description

ipc common permissions See Table C-3. (Note that ipc object class is no
longer used.)

Table C-39. msg Permissions

Permissions Description

receive Remove a message from a
queue.

send Add a message to a queue.



Table C-40. msgq Permissions

Permissions Description

ipc common
permissions

See Table C-3.

enqueue Put a message onto a queue.

Table C-41. sem Permissions

Permissions Description

ipc common
permissions

See Table C-3.

Table C-42. shm Permissions

Permissions Description

ipc common
permissions

See Table C-3.

lock Lock/unlock page(s) in memory.

C.2.4. Miscellaneous Object Classes

The remaining object classes are primarily system control and management object classes. Most of
the permissions are usually those reserved for the root user on a non-SELinux system and generally
would be limited to selected trusted domains in SELinux. Most object classes are one or a fixed
number of instances. (That is, you cannot create object instances of these classes like you can with
file or socket classes.) The object classes in this group are listed in Table C-43.

Table C-43. Summary of Remaining Miscellaneous Object Classes



Object Class Description Permission
Definitions

capability Privileges that are implemented as capabilities in Linux.
These capabilities represent the typical "root" privileges. In
SELinux, each process has a single instance of this object
class that has the same type as the process itself. In
SELinux, to use a capability defined in the kernel, the
process domain type must be allowed the associated
permission for the capability object class for the type of
the process.

Note that the capabilities grant privileges with respect to
standard Linux; the Linux check (either for the capability
or superuser) and the SELinux check are orthogonal. (That
is, both are required; neither is sufficient alone.)

Table C-44

passwd A userspace class that represents the password and
shadow files. The permission checks are enforced in the
passwd program (although the access information is held
in the kernel policy).

Table C-45

pax Pax security objects. Pax is a separate Linux security
mechanism that may be integrated with SELinux.

Table C-45

process Each process itself is an object of class process and must
have permission to its own type (or other process types)
to perform certain actions with regard to the target
process.

Table C-46

security The SELinux security server. There is only one instance of
this object class.

Table C-47

system The system. Any system-level privileged functions not
covered by the capability or the security object classes are
embodied in the system object. There is only one instance
of this object class.

Table C-48

Table C-44. capability Permissions

Permissions Description

audit_control Allows the process to change auditing rules. Set login UID.

audit_write Allows the process to send audit messsages from
userspace.

chown Allows the process to change file ownership on a system
where users are restricted to only changing group
ownership.



Permissions Description

dac_override Allows the process to ignore discretionary access controls
including access lists. The capability does not include the
access covered by linux_immutable (see below).

dac_read_search Allows the process read and search permission on all files
and directories regardless of their DAC settings except for
access covered by linux_immutable (see below) or where
not permitted by SELinux permissions.

fowner Allows the process to access a file when the file owner is
not the same as the process' user ID. Other security
checks (that is, DAC and MAC) are still in effect.

fsetid Allows the process to set the group ID of a file where the
group ID does not match that of the process.

ipc_lock Allows the proceses the capability to lock non-shared and
shared memory segments.

ipc_owner Allows the process to ignore IPC ownership checks.

kill Allows the process to send a kill signal to a process owned
by a different user.

lease Allows the process to take leases on a file. A lease allows a
process to be notified when another process accesses the
file that a lease's file descriptor refers to.

linux_immutable Allows the process to change S_IMMUTABLE and S_APPEND file
attributes on supporting filesystems.

mknod Allows the process to create character and block device
nodes.

net_admin Allows the process a variety of trusted network
permissions such as configuring network interfaces, firewall
settings, and routing tables. (See
/usr/include/linux/capabilities.h for full list).
Appropriate SELinux permissions remain in effect.

net_bind_service Allows the process to bind TCP/UDP sockets to ports below
1024 or bind to ATM VCIs below 32.

net_broadcast Allows the process to send network broadcasts and listen
to incoming multicasts.

net_raw Allows the process to create and use non-TCP/UDP
sockets. Appropriate SELinux controls are still in effect.
(That is, the process must also have appropriate
permissions on a packet_socket or rawip_socket).

setgid Allows a non-root process to set its group IDs.

dac_override Allows the process to ignore discretionary access controls
including access lists. The capability does not include the
access covered by linux_immutable (see below).

dac_read_search Allows the process read and search permission on all files
and directories regardless of their DAC settings except for
access covered by linux_immutable (see below) or where
not permitted by SELinux permissions.

fowner Allows the process to access a file when the file owner is
not the same as the process' user ID. Other security
checks (that is, DAC and MAC) are still in effect.

fsetid Allows the process to set the group ID of a file where the
group ID does not match that of the process.

ipc_lock Allows the proceses the capability to lock non-shared and
shared memory segments.

ipc_owner Allows the process to ignore IPC ownership checks.

kill Allows the process to send a kill signal to a process owned
by a different user.

lease Allows the process to take leases on a file. A lease allows a
process to be notified when another process accesses the
file that a lease's file descriptor refers to.

linux_immutable Allows the process to change S_IMMUTABLE and S_APPEND file
attributes on supporting filesystems.

mknod Allows the process to create character and block device
nodes.

net_admin Allows the process a variety of trusted network
permissions such as configuring network interfaces, firewall
settings, and routing tables. (See
/usr/include/linux/capabilities.h for full list).
Appropriate SELinux permissions remain in effect.

net_bind_service Allows the process to bind TCP/UDP sockets to ports below
1024 or bind to ATM VCIs below 32.

net_broadcast Allows the process to send network broadcasts and listen
to incoming multicasts.

net_raw Allows the process to create and use non-TCP/UDP
sockets. Appropriate SELinux controls are still in effect.
(That is, the process must also have appropriate
permissions on a packet_socket or rawip_socket).

setgid Allows a non-root process to set its group IDs.



Permissions Description

setpcap Adds or removes the process' capability from another
process' capability set. Note that the use of an added
capability must still be allowed in the policy.

setuid Allows a non-root process to set its real and/or effective
IDs.

sys_admin This capability allows the process many "standard"
administrative functions. Some of these are: configuring
syslog, setting the domain and host names, turning swap
on or off, accessing and configuring of various devices (for
example, IDE, SCSI, and do on), and setting the
encryption key for a loopback filesystem. See
/usr/include/linux/capability.h for the complete list.

sys_boot Allows the process to reboot the system.

sys_chroot Allows the process to use the chroot(2) call.

sys_module Allows the process unrestricted kernel modification
capability including, but not limited to, loading and
removing kernel modules. Allows modification of kernel's
bounding capability mask.

sys_nice Allows the process to change priority of other processes.
Also allows the process to change the scheduling algorithm
used by any process.

sys_pacct Allows the process to modify process accounting.

sys_ptrace Allows the process to ptrace(2) another process.

sys_rawio Allows the process to use ioperm(2) and iopl(2) as well as
the capability to send messages to USB devices via
/proc/bus/usb.

sys_resource Allows the process to change various system resources:
quota limits, reserved ext2 filesystem space, ext3
journaling mode, IPC message queue size restrictions,
control of interrupts from real-time clock, change
maximum number of consoles, and change maximum
number of keymaps.

sys_time Allows the process to set system time and to set the real-
time clock.

sys_tty_config Allows the process to configure tty devices. Allows
vhangup(2) call on a tty.

Table C-45. passwd Permissions

setpcap Adds or removes the process' capability from another
process' capability set. Note that the use of an added
capability must still be allowed in the policy.

setuid Allows a non-root process to set its real and/or effective
IDs.

sys_admin This capability allows the process many "standard"
administrative functions. Some of these are: configuring
syslog, setting the domain and host names, turning swap
on or off, accessing and configuring of various devices (for
example, IDE, SCSI, and do on), and setting the
encryption key for a loopback filesystem. See
/usr/include/linux/capability.h for the complete list.

sys_boot Allows the process to reboot the system.

sys_chroot Allows the process to use the chroot(2) call.

sys_module Allows the process unrestricted kernel modification
capability including, but not limited to, loading and
removing kernel modules. Allows modification of kernel's
bounding capability mask.

sys_nice Allows the process to change priority of other processes.
Also allows the process to change the scheduling algorithm
used by any process.

sys_pacct Allows the process to modify process accounting.

sys_ptrace Allows the process to ptrace(2) another process.

sys_rawio Allows the process to use ioperm(2) and iopl(2) as well as
the capability to send messages to USB devices via
/proc/bus/usb.

sys_resource Allows the process to change various system resources:
quota limits, reserved ext2 filesystem space, ext3
journaling mode, IPC message queue size restrictions,
control of interrupts from real-time clock, change
maximum number of consoles, and change maximum
number of keymaps.

sys_time Allows the process to set system time and to set the real-
time clock.

sys_tty_config Allows the process to configure tty devices. Allows
vhangup(2) call on a tty.

Table C-45. passwd Permissions



Permissions Description

chfn Change finger information for a different user (that is, the
string in the passwd file for an account; commonly the
user's real name).

chsh Change login shell for a particular account.

crontab Permits a cron job to be run as a different user than the
user who submitted the job.

passwd Update a different user's password.

rootok Allow update if the user is root and the process has the
rootok permission.

Table C-46. pax Permissions

Permissions Description

emutramp Emulate gcc trampolines (a technique for implementing
nested functions) so that they will work with pax.

mprotect Protects the modification of a task's address space.

pageexec Paging-based, non-executable pages.

randexec Randomize the mappings of an executable not built with
relocatable code.

randmmap Randomize mappings in a task's address space for an
executable with relocatable code.

segmexec Segmentation-based, nonexecutable pages.

Table C-47. process Permissions

Permissions Description

dyntransition Allows a process to dynamically transition to a new
context. This capability is tied in with the setcurrent
capability; both are required for a process domain
transition. The ability of a process to change from one
domain to another is extremely dangerous because it
violates the principle of label tranquility for a process. It
creates a real potential for unintentional granting of
access.



Permissions Description

execheap Make the heap executable.

execmem Make executable an anonymous mapping or private file
mapping that is writable.

execstack Make the process stack executable.

fork Fork into two processes.

getattr Get attributes of a process through the /proc/[pid]/attr
directory.

getcap Get Linux capabilities allowed for this process.

getpgid Get Process Group ID of process.

getsched Get priority of process.

getsession Get session ID of process.

noatsecure Disable secure mode environment cleansing. Allows
process to disable secure mode feature of glibc on
execve(2).

ptrace Trace program execution of parent or child.

rlimitnh Inherit process resource limits from parent process.

setcap Set Linux capabilities allowed for this process.

setcurrent Set the current process context. This is the first permission
checked when a process tries to perform a dynamic
domain transition. The dyntransition capability is also
required.

setexec Override the default context for the next execve(2). Allows
a process to set the context of a program it execs to
something other than the default context. (The context
must still be a valid context for the domain of the new
process.).

setfscreate Allows a process to set the context of an object created by
the process to something other than the default context.

setpgid Set Process Group ID of process.

setrlimit Change process hard resource limits.

setsched Set priority of process.

share Allow state sharing with cloned or forked process.

sigchld Send SIGCHLD signal.

siginh Inherit signal state from parent process.

sigkill Send SIGKILL signal.

execheap Make the heap executable.

execmem Make executable an anonymous mapping or private file
mapping that is writable.

execstack Make the process stack executable.

fork Fork into two processes.

getattr Get attributes of a process through the /proc/[pid]/attr
directory.

getcap Get Linux capabilities allowed for this process.

getpgid Get Process Group ID of process.

getsched Get priority of process.

getsession Get session ID of process.

noatsecure Disable secure mode environment cleansing. Allows
process to disable secure mode feature of glibc on
execve(2).

ptrace Trace program execution of parent or child.

rlimitnh Inherit process resource limits from parent process.

setcap Set Linux capabilities allowed for this process.

setcurrent Set the current process context. This is the first permission
checked when a process tries to perform a dynamic
domain transition. The dyntransition capability is also
required.

setexec Override the default context for the next execve(2). Allows
a process to set the context of a program it execs to
something other than the default context. (The context
must still be a valid context for the domain of the new
process.).

setfscreate Allows a process to set the context of an object created by
the process to something other than the default context.

setpgid Set Process Group ID of process.

setrlimit Change process hard resource limits.

setsched Set priority of process.

share Allow state sharing with cloned or forked process.

sigchld Send SIGCHLD signal.

siginh Inherit signal state from parent process.

sigkill Send SIGKILL signal.



Permissions Description

signal Send a signal other than SIGKILL, SIGSTOP, or SIGCHLD.

signull Test for existence of another process without sending a
signal.

sigstop Send SIGSTOP signal.

transition Transition to a new context on execve(2).

Table C-48. security Permissions

Permissions Description

check_context Allows a domain to check with the security server to see
whether a context is valid within the current policy.

compute_av Ask the security server to compute an access vector given
a source/target/class using the selinuxfs interface.

compute_create Retrieve a labeling decision on a new object.

compute_member Ask the security server to compute a polyinstantiation
membership decision through the selinuxfs interface.

compute_relabel Allows a domain to use the selinuxfs interface to compute
a relabeling decision.

compute_user Allows domain to use the selinuxfs interface to retrieve a
user's reachable SIDs.

load_policy Load the security policy. This completely changes the
kernel policy being enforced, and flushes the current
access vector cache (AVC) so that all future access
decisions are made against the new policy.

setbool Allows a domain to set policy Boolean values. The domain
also needs permissions on the Boolean file (that is, based
on the label of the Boolean file).

setcheckreqprot Set if SELinux will check original protection mode or
modified protection mode (read-implies-exec) for
mmap/mprotect.

setenforce Change the enforcement state of SELinux to either
permissive mode or enforcing mode. The kernel may be
built to not allow this capability.

setsecparam Set kernel AVC tuning parameters.

compute_user Allows domain to use the selinuxfs interface to retrieve a
user's reachable SIDs.

signal Send a signal other than SIGKILL, SIGSTOP, or SIGCHLD.

signull Test for existence of another process without sending a
signal.

sigstop Send SIGSTOP signal.

transition Transition to a new context on execve(2).

Table C-48. security Permissions

Permissions Description

check_context Allows a domain to check with the security server to see
whether a context is valid within the current policy.

compute_av Ask the security server to compute an access vector given
a source/target/class using the selinuxfs interface.

compute_create Retrieve a labeling decision on a new object.

compute_member Ask the security server to compute a polyinstantiation
membership decision through the selinuxfs interface.

compute_relabel Allows a domain to use the selinuxfs interface to compute
a relabeling decision.

compute_user Allows domain to use the selinuxfs interface to retrieve a
user's reachable SIDs.

load_policy Load the security policy. This completely changes the
kernel policy being enforced, and flushes the current
access vector cache (AVC) so that all future access
decisions are made against the new policy.

setbool Allows a domain to set policy Boolean values. The domain
also needs permissions on the Boolean file (that is, based
on the label of the Boolean file).

setcheckreqprot Set if SELinux will check original protection mode or
modified protection mode (read-implies-exec) for
mmap/mprotect.

setenforce Change the enforcement state of SELinux to either
permissive mode or enforcing mode. The kernel may be
built to not allow this capability.

setsecparam Set kernel AVC tuning parameters.



Permissions Description

compute_user Allows domain to use the selinuxfs interface to retrieve a
user's reachable SIDs.

compute_relabel Allows a domain to use the selinuxfs interface to compute
a relabeling decision.

compute_create Retrieve a labeling decision on a new object.

compute_av Ask the security server to compute an access vector given
a source/target/class using the selinuxfs interface.

compute_member Ask the security server to compute a polyinstantiation
membership decision through the selinuxfs interface.

setenforce Change the enforcement state of SELinux to either
permissive mode or enforcing mode. The kernel may be
built to not allow this capability.

check_context Allows a domain to check with the security server to see
whether a context is valid within the current policy.

load_policy Load the security policy. This completely changes the
kernel policy being enforced, and flushes the current
access vector cache (AVC), so that all future access
decisions are made against the new policy.

setbool Allows a domain to set policy Boolean values. The domain
also needs permissions on the Boolean file (that is, based
on the label of the Boolean file).

setsecparam Set kernel AVC tuning parameters.

setcheckreqprot Set if SELinux will check original protection mode or
modified protection mode (read-implies-exec) for
mmap/mprotect.

Table C-49. system Permissions

Permissions Description

avc_toggle No longer used (see setenforce permission in the security
object).

bdflush Deprecated, not used.

ichsid Deprecated, not used.

ipc_info Get info for IPC objects.

nfsd_control Deprecated, not used.

compute_user Allows domain to use the selinuxfs interface to retrieve a
user's reachable SIDs.

compute_relabel Allows a domain to use the selinuxfs interface to compute
a relabeling decision.

compute_create Retrieve a labeling decision on a new object.

compute_av Ask the security server to compute an access vector given
a source/target/class using the selinuxfs interface.

compute_member Ask the security server to compute a polyinstantiation
membership decision through the selinuxfs interface.

setenforce Change the enforcement state of SELinux to either
permissive mode or enforcing mode. The kernel may be
built to not allow this capability.

check_context Allows a domain to check with the security server to see
whether a context is valid within the current policy.

load_policy Load the security policy. This completely changes the
kernel policy being enforced, and flushes the current
access vector cache (AVC), so that all future access
decisions are made against the new policy.

setbool Allows a domain to set policy Boolean values. The domain
also needs permissions on the Boolean file (that is, based
on the label of the Boolean file).

setsecparam Set kernel AVC tuning parameters.

setcheckreqprot Set if SELinux will check original protection mode or
modified protection mode (read-implies-exec) for
mmap/mprotect.

Table C-49. system Permissions

Permissions Description

avc_toggle No longer used (see setenforce permission in the security
object).

bdflush Deprecated, not used.

ichsid Deprecated, not used.

ipc_info Get info for IPC objects.



Permissions Description

nfsd_control Deprecated, not used.

syslog_console Allows domain to enable and disable logging to the console
and to set the level of syslog messages sent to the
console.

syslog_mod Perform syslog operation other than those operations
controlled by syslog_read or syslog_console permissions.

syslog_read Allows domain to retrieve the last kernel messages sent to
the log and the size of the log buffer.

nfsd_control Deprecated, not used.

syslog_console Allows domain to enable and disable logging to the console
and to set the level of syslog messages sent to the
console.

syslog_mod Perform syslog operation other than those operations
controlled by syslog_read or syslog_console permissions.

syslog_read Allows domain to retrieve the last kernel messages sent to
the log and the size of the log buffer.
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In this appendix we provide an introduction to some of the available SELinux tools. These tools
include utilities for policy analysis, policy writing, policy generation, SELinux system management,
and more. We indicate where to find the tools and, in the case where a tool is not included with a
distribution, we provide the most current repository on the Internet.



D.1. System Utilities

Distributions that support SELinux include a number of core utilities and programs that are usually
present on any SELinux-enabled system. In this section, we present the programs included with
Fedora Core 4 (FC4). Red Hat Enterprise Linux version 4 (RHEL4) and FC5 will have mostly the same
core system utilities. We have mentioned many of these utilities throughout this book.

D.1.1. Policy Tools

The policy tools are directly related to the SELinux policy, and writing and managing policies:

checkpolicy(8) This is the SELinux policy compiler. It transforms a complete SELinux
policy into a binary version that the kernel can load. It can also be
used to debug a policy in that it can mimic some of the capabilities of
the SELinux security server. No special permissions are needed to
run this program if you are experimenting/debugging a policy outside
of the official policy directory (that is, /etc/selinux/).

load_policy(8) This utility loads a binary policy file into the kernel. To successfully
load a policy in enforcing mode, the user must run the command in a
domain that has the load_policy permission. (See the security
object class in Appendix C, "Object Classes and Permissions").

setsebool(8) This command sets current and persistent values for policy Boolean
variables. See Chapter 9, "Conditional Policies." This command
requires setbool permission for the security class and read/write
permission to the Boolean files themselves.

togglesebool(1) This command toggles the current value of SELinux Booleans. The
same permissions as the setsebool(8) command are required.

setenforce(8) This command changes the mode of SELinux between enforcing and
permissive modes. The domain in which the command is run must
have the setenforce permission for the security object class.

audit2allow(1) A command that takes access vector cache (AVC) audit denial
messages (usually from the system log file) and outputs allow rules
that, if included into the policy, permit the actions that were denied.
This command is commonly used to generate a rough first draft type
of policy for an application. The man page describes the weaknesses
of this approach and some of the other problems with developing
policy this way.

audit2why(1) Attempts to provide a reason for AVC audit denial messages by
comparing them with the rules in the policy. This is most useful for
identifying constraint violations.



ausearch(8) Although not explicitly an SELinux command, this command does
some basic interpretation of audit messages and can pull out just
AVC messages with the -m avc option. It is part of the new Linux
audit framework package and is included in the updated audit RPM
for FC4 4, Update 2 for RHEL4, and FC5.

D.1.2. SELinux Status Information

These utilities return information about SELinux. They do not change or affect the operation of
SELinux in any way:

avcstat(8) Displays statistics and counters for various AVC actions (for example,
the number of cache hits).

getenforce(8) Returns a string indicating the current mode of SELinux ("permissive"
or "enforcing").

selinuxenabled(1) Specifically designed for shell scripts to be able to determine whether
SELinux is enabled or disabled (as opposed to permissive/enforcing
mode).

getsebool(8) Returns the active value of one or more SELinux Boolean values. It
returns "active" if the Boolean is true, and "inactive" if the Boolean is
false.

sestatus(8) A program that returns various status information about SELinux,
such as the enforcing mode, the current policy version and name,
and the status of the Booleans.

D.1.3. Security Context Labeling

These programs relate to managing security context labeling for objects. They are generally
administrative commands that require enough privilege to relabel file-related objects. Some systems
have a specific SELinux policy for the commands to ensure that only approved domains may run
them with full privileges. In most cases, the commands must be run in a domain with
relabelto/relabelfrom permissions on the source and target security contexts, and must meet any
relevant validatetrans constraints. The new security context must also be a valid triplet (that is,
user/role/type) for the currently loaded policy.



chcon(1) Changes the security context, or part of the security context, for file-
related object classes (for example, ordinary files and directories).

fixfiles(8) A utility that relabels any number of filesystem objects. Its default
behavior is to relabel all mounted filesystems that support SELinux
labeling unless they were mounted with the context mount option. It
automatically determines the file security context specifications to
use for the labeling.

restorecon(8) A labeling utility similar to fixfiles(8) except that it is suited more
for relabeling individual files or directories.

setfiles(8) The original system relabeling utility. It is similar to fixfiles(8). The
main difference is that it requires a file context specification file as an
argument along with at least one path name.

genhomedircon(8) A script for generating the correct file context specification files for
users' home directories.

matchpathcon(8) This command returns the default security context for a path based
on the active policy's file context file.

D.1.4. Security Context Changing Utilities

These command are used to start new processes with specific SELinux security contexts. The
initiating domain type must have appropriate permission to allow a domain transition to the new
type:

newrole(1) This command creates a new shell running with a new security
context. The user may specify a new role and/or type. If the system
is a multilevel security (MLS) or multicategory security (MCS)
system, a security level may also be specified. If only a role is
specified then the default type derived for that role is used. The
current user's password must be entered for the command to
succeed.

runcon(1) Similar to newrole(1) except that it requests that a specified
command is run with a different security context. A combination of
user/role/type/level may be requested instead of a full security
context.

run_init(8) Runs an initrc script using the security context found in the current
policy's contexts/initrc_context file. This command is usually used
to restart system services so that they end up in the intended
domain.

D.1.5. SELinux Modified Commands

The following commands are standard Linux commands that have been modified for SELinux to



provide additional SELinux-related features:

dir(1) Additional arguments that list security contexts in various formats

find(1) Options to use security contexts as a search criteria and an output
format

install(1) Options to preserve security contexts (when copying) or use specified
security contexts (when creating)

killall(1) Adds an option to kill all processes with a specified security context

ls(1) Additional arguments that list security contexts in various formats

mkdir(1) Adds an option to specify the security context for a new directory

ps(1) Adds an option to display the security contexts of processes

pstree(1) Adds an option to display the security contexts of processes

stat(1) Adds an option to display the security context

vdir(1) Additional arguments that list security contexts in various formats

sudo/sudoedit(8) Adds options to specify a role and type to run the command in

D.1.6. Policy Module Manual Pages

There are a series of manual pages written to help administrators with the SELinux aspects of various
"standard" Linux services and utilities. Usually the manual pages describe the effects of the particular
policy module on that specific service. There is also a manual page describing SELinux in general and
the use of Booleans:

booleans(8) General information on how to use SELinux Booleans

selinux(8) General information on SELinux

ftpd_selinux(8) Information on how SELinux affects the FTP daemon

httpd_selinux(8) Information on how SELinux affects the Web server

kerberos_selinux(8) Information on SELinux and Kerberos

named_selinux(8) Information on SELinux and the name daemon

nfs_selinux(8) Information on how to use NFS with SELinux

rsync_selinux(8) Information on SELinux and the rsync daemon

samba_selinux(8) Information on SELinux and resource sharing with a Samba server

ypbind_selinux(8) Describes how to configure SELinux to permit NIS its required
network privileges





D.2. SETools Suite

Tresys Technology has a long standing suite of tools for analyzing and debugging SELinux policies.
These tools are open source and are usually included in any Linux distribution that supports SELinux.
The latest version of the tool suite and its source code is available from www.tresys.com/selinux.

All the source packages contain help files explaining how to use the tools and their features. All the
tools are based on common policy library, libapol, also included in the setools package.

apol This is the SELinux policy analysis tool we use throughout this book.
It accepts either a policy.conf file or a compiled binary policy file. It
is able to parse almost all versions of SELinux policy. Apol allows
complicated rule searches and has several powerful automated
analysis modules that perform such things as information flow and
domain transition analyses.

sediff A utility to semantically compare two policies. It can compare source
policies, binary policies, or a combination of both. It can be run from
the command line or with a GUI front end. (Both sediffx or sediff -
X bring up the GUI.)

seaudit A tool to browse and analyze SELinux audit messages. The tool will
operate directly on the target system in real time or it can be used to
analyze off-loaded log files. It not only has extended filtering
capabilities, but it also provides an analysis tie-in with the policy that
was on the source system. It can save filter configurations or views
and can generate both text and HTML reports.

seaudit-report A command-line tool that processes audit logs and generates reports
in HTML and plain text. The reports are based on seaudit views (that
is, saved filter specifications).

sechecker A command-line tool that performs various quality checks on a policy
file (binary or source). It includes a template for generating custom
checks. The goal is to provide a tool that can examine an SELinux
policy for common problems and weaknesses.

secmds A collection of command-line tools that examine various information
on an SELinux policy. The collection includes the following:

  seinfo Provides general information about a given policy
file (source or binary).

  sesearch Performs apol-like rule searches on a given binary
or source policy.



findcon A command to search for files and directories with a specific security
context. The search can be limited to a specific object class.

replcon A command similar to findcon, but with the added feature of allowing
a partial or whole replacement of the security context.

indexcon Generates a database file of all of the labels of files and directories on
the system, or, if specified, a directory. The database file can be used
with the file contexts analysis function of apol or searchcon.

searchcon Searches through a file context database generated by indexcon
using user specified criteria.



D.3. Other SELinux Tools

A number of other tools are being developed by various organizations. These tools are available as
open source projects. They are in various levels of development and primarily aimed at aiding in the
development or generation of SELinux policy.

Polgen/Slat (www.mitre.org/tech/selinux/) Tools developed by the MITRE
Corporation. Polgen can be used to automatically generate policy.
Slat performs information flow analysis between types.

SLIDE (http://sourceforge.net/projects/selinux-ide) A new open source
project by Tresys Technology to develop an integrated development
environment (IDE) that covers all aspects of SELinux policy
development. The goal is to provide a single environment to develop,
modify, analyze, and test SELinux policies.

Virgil (http://sourceforge.net/projects/sepolicy-virgil A policy generation
tool developed by IBM. It is a utility that generates SELinux policy
automatically through a GUI. It is designed to provide a quick and
easy policy for services where there is not yet a developed policy.

seedit (http://sourceforge.net/projects/seedit) A policy editor originally
developed by Hitachi Software. It provides a Web-based GUI for
generating new policy statements. It attempts to ease the
development of policy by generalizing some of the policy details and
providing a point-and-click interface.

http://sourceforge.net/projects/selinux-ide
http://sourceforge.net/projects/sepolicy-virgil
http://sourceforge.net/projects/seedit
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* (wildcard operators), AV (access vector) syntax,

== operator

     conditional expressions

     constrain statement

     misconstrain statement

     misvalidatetrans statement

     validatetrans statement

^ operator, conditional expressions,

|| operator, conditional expressions,
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abstraction, reference policy modularity,

accept permission,

access

     apol (policy analysis tool)

         conditional policies

         object classes

         object labeling

         TE (type enforcement)

         user roles

    constraints

         elements of constrain statement

         LSM (Linux Security Module)

         MLS (multilevel security)

         validatetrans statement

    control [See TE (type enforcement),, access control.]

     RBAC (role-based access control)

         basics

         object security contexts

         privilege management

     user identifiers

         declaring users

         mapping Linux users to SELinux users

    user roles

         role allow rule

         role declaration statement

         role dominance statement

         transition rules

access control

     evolution in operating systems

         DAC mechanism weaknesses

         MAC origins

         reference monitor

         SELinux evolution

         TE (type enforcement)

     security context

         basics

         SELinux versus standard Linux

     TE (type enforcement)

         domain transitions

         password management program example

         standard Linux SetUID programs



         type transition rule

access interfaces, reference policy modularity,

access revocation,

access vector (AV) rules,

     allow rules

     audit rules

     basic syntax 2nd

         attributes

         keys

         multiple types and attributes

         object classes and permissions

         self keyword

         special operators

         type negation

     neverallow rule

access vector cache (AVC), 2nd

access vector statements

     associating permissions with object class

     syntax

aliases, TE (type enforcement),

allow rules, 2nd 3rd 4th

allow statement, conditional statement,

analysis, policy modules,

Anderson Report,

APIs (application programming interfaces),

apol (policy analysis tool),

     conditional policies

     object classes

     object labeling

     TE (type enforcement)

append permission, 2nd

application programming interfaces (APIs),

architectures

    kernels

         Flask architecture

         LSM (Linux Security Module)

         userspace object managers

     policy languages

         checkpolicy program

         installing monolithic policies

         loadable modules

         monolithic policy

associate permission,

association object class,

association permissions,

attributes

     AC (access vector) syntax

     associating types

     AV (access vector) syntax

     processes

     statements

     TE (type enforcement)



audit messages

     evaluating

     system administration

         AVC messages

         general messages

         seaudit tool

audit rules, access vector rules,

audit2allow tool,

audit2why tool,

auditallow rule,

auditallow statement, conditional statement,

auditdeny rule,

ausearch tool,

automatic relabeling, file-related object labeling,

AV (access vector) rules,

     allow rules

     audit rules

     basic syntax 2nd

         attributes

         keys

         multiple types and attributes

         object classes and permissions

         self keyword

         special operators

         type negation

     neverallow rule

AVC (access vector cache), 2nd

AVC messages, 2nd

avcstat tool,
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base modules,

binary policy files,

bind permission,

blk_file object class,

blk_file permissions,

bool statement, defining Boolean variable,

Boolean variables,

     apol

    conditional policies

         defining

         running system management

         value changes

build processes

     methods for managing

     strict example policy

         build options

         policy module

         source file structure

     targeted example policy

build-time options,

build.conf files, reference policy, 2nd

Building a Secure Computer System,
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capability object class,

capability object labeling,

capability permissions,

categories, MLS (multilevel security),

category statement, defining security levels,

chcon tool,

checkpolicy programs,

chr_file object class,

chr_file permissions,

class declaration statements,

classes

     object

         apol

         AV (access vector) syntax

         changing

         defining

         file related

         IPC-related

         miscellaneous

         network-related

         permissions

         purpose

     permissions

clearance security levels,

commands

     file-related object labeling

     system utilities

common permissions sets,

common permissions,

     declaring

     syntax

comp (comparable) security level,

complement operators, AV (access vector) syntax,

conditional expressions,

conditional policies

     apol

     basics

    Boolean variables

         Defining

         running system management

         value changes



    conditional statement

         expressions

         limitations

         rule lists

conditional statements

     expressions

     limitations

     rule lists

conditional TE policies,

conferences, SELinux,

config file, reference policy,

configuration files, system management,

     etc/selinux/config file

     policy directories

connect permission,

constrain statement,

constraints,

     elements of constrain statement

     LSM (Liinux Security Module)

    MLS (multilevel security)

         misconstrain statement

         misvalidatetrans statement

     validatetrans statement

context mount option,

create permission, 2nd

current security levels,

current values, Boolean variable,
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DAC (discretionary access control) 2nd

defined permissions sets,

     file-related object classes

     miscellaneous object classes

     network and socket object classes

     system V IPC-related object classes

destroy permission,

dir command,

dir object class,

dir permissions,

directories, policy,

     filesystem

     installed Boolean files

     security contexts

     user definitions

discretionary access control (DAC) 2nd

Distribute Trusted Mach (DTMach),

doc files, reference policy,

dom (dominates) security levels,

dom operator

     constrain statement

     misconstrain statement

     misvalidatetrans statement

     validatetrans statement

domain transitions

     defaults

     initial policy module

         example policy

         reference policy

     TE (type enforcement)

domain types

     basics

     roles versus user

     strict example policy 2nd

     transitions

domby (dominated by) security levels,

domby operator

     constrain statement

     misconstrain statement

     misvalidatetrans statement

     validatetrans statement



dominance relationships,

dominance statement, 2nd

dominated by (domby) security levels,

dominates (dom) security levels,

dontaudit rule, 2nd

dontaudit statement, conditional statement,

DTMach (Distribute Trusted Mach),

dyntransition permission, 2nd
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emergency policy development tools,

encapsulation, reference policy modularity,

entrypoint (UL) permission,

entrypoint accesses,

entrypoint permission, 2nd

eq (equals) security levels,

eq operator

     constrain statement

     misconstrain statement

     misvalidatetrans statement

     validatetrans statement

equals (eq) security levels,

etc/selinux/config files, system management,

example policies

     adding additional access

     build processes methods

     creating labeling policy

     declaring types

     domain transitions

     initial policy module

     obtaining

         historical policies

         recent patches

         RHEL4 (Red Hat Enterprise Linux 4)

         strict example policy for FC4

     strict example policy

         build options

         policy module

         source file structure

     system policy integration with initial policy

     targeted example policy

examply policy, allowing initial restrictive access,

execheap permission,

execmem permission,

execmod* permission,

execstack permission,

execute permission, 2nd 3rd

execute_no_trans* permission,

expressions, conditional statement,

extended attribute mechanisms, file-related object labeling,

     labeling behavior



     managing security contexts
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FC4 (Fedora Core 4)

     example policy support

     object classes

         apol

         file related

         IPC-related

         Miscellaneous

         network-related

         permissions

     strict example policies

FC5 (Fedora Core 5)

     MLS (multilevel security)

     policy directories

     reference policy

     Web site

fd object class,

fd permissions,

Fedora Core 4 (FC4)

     example policy support

     object classes

         apol

         file related

         IPC-related

         miscellaneous

         network-related

         permissions

     strict example policies

Fedora Core 5 (FC5)

     MLS (multilevel security)

     policy directories

     reference policy

     Web site

fifo_file object class,

fifo_file permissions,

file common permission sets,

file initial SIDs,

file object class, permissions, 2nd

     extension from standard Linux

     SELinux specific

     standard Linux permissions

file permissions,



file-related object classes, 2nd

file-related object labeling,

     extended attribute mechanisms

         labeling behavior

         managing security contexts

     generalized security context labeling

         fine-grained labeling with genfscon statement

         legacy filesystem labeling with genfscon statement

     system administration

         automatic relabeling

         commands

     task-based filesystems

     transition-based filesystems

files, policy modules,

filesystem object class,

filesystems

     permissions

     policy directories

     use statements

find command,

fixfiles tool,

Flask architectures, LSM (Linux Security Module),

Flask,

fork permission,

frameworks, LSM (Linux Security Module),
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Gasser, Morrie, Building a Secure Computer System,

generalized filesystem labeling support statements,

generalized security context labeling,

     fine-grained labeling with genfscon statement

     legacy filesystem labeling with genfscon statement

genfscon statements,

     fine-grained labeling

     legacy filesystem labeling

genhomedircon tool,

getattr permission, 2nd 3rd

getcap permission,

getenforce tool,

getopt permission,

getpgid permission,

getsched permission,

getsebool command,

getsebool tool,

getsession ermission,
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hard-coded defaults, object labeling,

Hardened Gentoo Web site,

high security levels,

historical policies,

history, operating system security

     access control evolution

     flawed software

hooks, LSM (Linux Security Module),



Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W]

identifiers, users,

     declaring

     mapping Linux users to SELinux users

ifdef statement,

incomp (incomparable) security level,

incomp operator

     constrain statement

     misconstrain statement

     misvalidatetrans statement

     validatetrans statement

initial policy module, writing

     allowing initial restrictive access

     creating files

     creating labeling policy

     declaring types

     domain transitions

     integrating into system policy

     policy application

initial security identifiers, object labeling,

initial SIDs

     object labeling 2nd

     statements

install command,

interfaces, reference policy modularity,

     access interface

     template interface

interprocess communication (IPC), 2nd

ioctl permission, 2nd

IP Security (IPsec),

IPC (interprocess communication), 2nd

ipc common permission sets,

ipc object class,

ipc permissions,

IPC-related object classes,

Ipsec (IP Security),

IRC channel, SELinux,

IRC daemon modules, listings,
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kernel initial SIDs,

kernels

     Flask architecture

     IPC-related

         Miscellaneous

         network-related

         permissions

     LSM (Linux Security Module)

     object classes

         apol

         file related

     policy language

         checkpolicy program

         installing monolithic policies

         loadable modules

         monolithic policy

     security servers, userspace object managers

     userspace object managers

         kernel security server

         policy server architecture

key_socket object class,

key_socket permissions,

keys, AC (access vector) syntax,

killall command,
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labeling

     creating policy

    security context

         strict example policy 2nd

         system utility tools

labeling objects

     apol

     basics

     capability objects

     file related

         extended attribute mechanisms

         generalized security context labeling

         task-based filesystems

         transition-based filesystems

     initial SIDs

     network and socket objects

     process objects

     security objects

     system objects

     System V IPC

layering, reference policy design,

level statement, defining security levels,

link permission, 2nd

Linux Security Module (LSM) 2nd

     Constraints

     Flask architecture

     mailing list

listen permission,

listings

     Example Policy: IRC Daemon Domain and Role Authorizations

     Example Policy: IRC Daemon File Contexts File

     Example Policy: IRC Daemon Initial Allowed Access

     Example Policy: IRC Daemon Type Declarations

     Example Policy: IRC Daemon, Allowing Access for logratate Domain

     IRC daemon modules

     Partial Interface for domain_type Access Interface

     Partial Interface for ssh_per_userdomain_template Interface

     Partial Listing for netutils Interface Module File

     Partial Listing for netutils Private Module File

     Policy Module for Ping from Strict Example Policy

     Reference Policy: IRC Daemon External Interface Example



     Reference Policy: IRC Daemon Labeling Policy File

     Reference Policy: IRC Daemon Private Allowed Access

     Reference Policy: IRC Daemon Private Type Declarations

lnk_file object class,

lnk_file permissions,

load_policies,

loadable modules

     dependency handling

     policy language

loadable policy modules,

loadable policy packages,

lock permission, 2nd

low security levels,

ls command,

LSM (Linux Security Module) 2nd

     constraints

     Flask architecture

     mailing list
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MAC (mandatory access control),

     origins

     TE (type enforcement)

mail lists

     LSM (Linux Security Module)

     SELinux

mandatory access control (MAC),

     origins

     TE (type enforcement)

manual pages, policy modules,

mapping, Linux users to SELinux users,

matchpathcon tool,

MCS (multicategory security),

methods

     policy build process

     strict example policy

         build options

         policy module

         source file structure

     targeted example policy

miscellaneous object classes, defined permissions sets,

miscontrain statement,

misvalidatetrans statement,

MITRE Corporation Web, site

mkdir command,

MLS (multilevel security) 2nd 3rd

    constraints

         misconstrain statement

         misvalidatetrans statement

     impacts

     restrictions

     security contexts

         defining security levels

         extensions

     TE (type enforcement)

modularity reference policy design,

     encapsulation

     interfaces

     module files

module files, reference policy modularity,

module manual pages,



modules, loadable dependency handling,

modules.conf files, reference policy,

monolithic policies,

mounton permission, 2nd

mountpoint labels,

msg object class,

msg permissions,

msgq object class,

msgq permissions,

multicategory security (MCS),

multilevel security [See MLS (multilevel security).]

multiple policies, management,

multiple types, AV (access vector) syntax,
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name_bind permission,

National Security Agency (NSA),

     historical policies site

     Web site 2nd

nesting conditional statements,

netif object class,

netif permissions,

netifinitial SIDs,

netlink_audit_socket object class,

netlink_audit_socket permissions,

netlink_dnrt_socket object class,

netlink_dnrt_socket permissions,

netlink_firewall_socket object class,

netlink_firewall_socket permissions,

netlink_ip6fw_socket object class,

netlink_ip6fw_socket permissions,

netlink_kobject_uevent_socket object class,

netlink_kobject_uevent_socket permissions,

netlink_nflog_socket object class,

netlink_nflog_socket permissions,

netlink_route_socket object class,

netlink_route_socket permissions,

netlink_selinux_socket object class,

netlink_selinux_socket permissions,

netlink_socket object class,

netlink_tcpdiag_socket object class,

netlink_tcpdiag_socket permissions,

netlink_xfrm_socket object class,

netlink_xfrm_socket permissions,

network objects

     classes, defined permissions sets

     labeling

network-related object classes,

neverallow rules, 2nd

newrole command,

newrole tool,

no access by default,

noatsecure permission,

node initial SIDs,

node object class,

node permissions,



NSA (National Security Agency),

     historical policies site

     Web site 2nd
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object classes,

     adding

     allow (UL) rule

     apol

     AV (access vector) syntax

     defining

         class declaration class

         permission declaration

     file related

     IPC-related

     Miscellaneous

     network-related

     permissions

         common permission sets

         defined permission sets

         file object class

         process object class

     purpose

     strict example policy

objects

    labeling

         apol

         basics

         capability objects

         file-related

         initial SIDs

         network and socket objects

         process objects

         security objects

         system objects

         System V IPC

     relabeling, validatetrans statement

     security context

     TE (type enforcement)

     transition default

open source projects,

operating systems, security history

     access control evolution

     flawed software

operators, AV (access vector) syntax,

optional statements,



organizational security policies,
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packet_socket object class,

packet_socket permission,

passwd permissions,

password management program example,

pax permissions,

pending values, Boolean variable,

permissions

     allow (UL) rule

     AV (access vector) syntax

     changing

     class-specific

     common

         declaring

         syntax

     conditional statement

     declaring

         access vector statement

         common permissions

     object classes

         common permission sets

         defined permission sets

         file object class

         process object class

     strict example policy

permissive mode,

persistent values, Boolean variables,

PID (process ID),

planning, writing policy modules

     application information

     creating test environment

     security goal specification

PMS (policy management server),

Polgen tool,

policies,

     build process

    conditional

         apol

         basics

         Boolean variables

         conditional statement

     control, object labeling



     directories

         filesystem

         installed Boolean files

         security contexts

         user definitions

     language

         checkpolicy program

         installing monolithic policies

         loadable modules

         monolithic policy

     management files

         etc/selinux/config file

         policy directories

     module manual pages

    obtaining sample policies

         example policy

         reference policy

     rules, strict example policy

     servers, architecture

     statements, object labeling

     strict example policy

         build options

         policy module

         source file structure

     system utility tools

     targeted example policy

policy analysis tool (apol),

policy files,

policy management server (PMS),

policy modules, writing

     analysis

     basics

     emergency development tools

     initial policy module

     IRC daemon modules

     planning

     testing

policy.conf files,

policy/mls files, reference policy,

policy/modules files, reference policy,

policy/modules.conf files, reference policy,

policy/support files, reference policy,

policy/users files, reference policy,

port initial SIDs,

preparation, writing policy modules

     application information

     creating test environment

     security goal specification

privileges, user roles,

process ID (PID),

process object class,

     permissions



         attributes

         domain type transition

         executing writable memory

         file creation

         process creation

         signaling processes

process object labeling,

process permissions,

projects, open source,

ps command,

pstree commad,

ptrace permission,
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quotaon permission, 2nd
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rawip_socket object class,

rawip_socket permissions,

RBAC (role-based access control) 2nd

     basics

     privilege management

read permission, 2nd

recv_mesg permission,

recvfrom permission,

Red Hat Enterprise Linux 4 (RHEL4)

     example policy support

     target policy

Red Hat Fedora Core 5, reference policy,

Red Hat, Fedora Core Web site,

reference monitors, operating system access control,

reference policies

     adding additional access

     allowing initial restrictive access

    build options

         build.conf file

         modules.conf file

     creating labeling policy

     declaring types

    design principles

         layering

         modularity

     domain transitions

    file structure

         build and support files

         core policy files

     goals

     initial policy module

     module example

     obtaining

         Red Hat Fedora Core 5

         Tresys Technology open source project site

     system policy integration with initial policy

reference validation mechanisms,

Reinhold, Van Nostran, Building a Secure Computer System,

relabelfrom permission, 2nd

relabelto permission, 2nd

rename permission, 2nd



require statements,

resources

     Hardened Gentoo

     NSA (National Security Agency)

     open source projects

     Red Hat Fedora Core site

     related security information

     SELinux IRC channel

     SELinux mailing list

     SELinux symposium

     Tresys Technology

restorecon tool,

restrictions, MLS (multilevel security),

restrictive access, initial policy module,

     example policy

     reference policy

revocation, access,

RHEL4 (Red Hat Enterprise Linux 4)

     example policy support

     target policy

rlimitnh permission,

role allow rules, 2nd

role declaration statement, 2nd

role dominance statement,

role transition rules,

role-based access control (RBAC), 2nd

     basics

     privilege management

roles

    users

         apol

         identifiers

         RBAC (role-based access control)

         role allow rule

         role declaration statement

         role dominance statement

         transition rules

     versus user domain types

rule lists, conditional statement,

rules, TE (type enforcement)

     access vector rules

     aliases

     apol

     associating types and attributes

     attributes

     basics

     declaring types

     type rules

Rules.modular files, reference policy,

run_init tool,

runcon tool,

runtime conditionals,
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sample policies, obtaining

     example policies

     reference policy

seaudit tool, audit messages,

security attributes,

security context,

     basics

     extended attributes

     labeling, strict example policy 2nd

     managing in extended attribute filesystems

    object labeling

         apol

         basics

         capability objects

         file-related

         initial SIDs

         network and socket objects

         process objects

         security object

         system objects

         System V IPC

     policy directories

     SELinux versus standard Linux

    system utility tools

         changing

         labeling

Security Enhanced Linux (SELinux),

     annual conference

     history

     IRC channel

     mail list

     open source site

security identifier (SID),

security initial SIDs,

security levels

     defining

     extensions

     MLS (multilevel security)

security object class,

security object labeling,

security permissions,



security servers,

sediff tool,

seedit tool,

self keyword, AV (access vector) syntax,

SELinux (Security Enhanced Linux),

     annual conference

     history

     IRC channel

     mail list

     open source site

selinuxenabled tool,

sem object class,

sem permissions,

send_msg permission,

sendto permission,

sensitivities, MLS (multilevel security),

sensitivity statement, defining security levels,

servers

     kernel security, userspace object managers

     policy architecture

sestatus tool,

setattr permission, 2nd

setcap permission,

setcurrent permission, 2nd

setenforce tool,

setexec permission,

setfiles tool,

setfscreate permission, 2nd

SETools package,

SETools Suite,

setopt permission,

setpgid permission,

setrlimit permission,

setsched permission,

setsebool command,

shadow password files,

share permission,

shm object class,

shm permissions,

shutdown permission,

SID (security identifier),

sigchld permission,

siginh permission,

sigkill permission,

signal permission,

signull permission,

sigstop permission,

Slat tool,

sock_file object class,

sock_file permissions,

socket common permission sets,

socket object classes, 2nd



socket objects, labeling,

socket permissions,

software, flawed security enforcement,

source files, strict example policy

     application configuration files

     domain types

     object class and permission definition

     policy rules

     security context labeling

     top-level files and directories

     unaffiliated types

source identifiers, allow (UL) rule,

source modules,

source policy files,

source types, allow (UL) rule,

stat command,

status information tools,

strict example policies,

    build options

         build-time tunables

         configuring policy modules

         enabling optional MLS features

     policy module

         audit rules

         conditional policy example

         defining domain types

         ping access

         security context labeling

         transition rules

    source file structure

         application configuration files

         domain types

         object class and permission definition

         policy rules

         security context labeling

         top-level files and directories

         unaffiliated types

su command,

sudo/sudoedit command,

support files, reference policy,

swapon permission, 2nd

symposiums, SELinux,

sysctl initial SIDs,

system administration, SELinux impact

     audit messages

     file-related object labeling

     multiple policy management

     user management

system managmenet

     configuration files

         etc/selinux/config file

         policy directories



     policy management files

         etc/selinux/config file

         policy directories

    system administration

         audit messages

         file-related object labeling

         managing users

         multiple policy management

system object class,

system object labeling,

system permissions,

system policies, 2nd

     example policy

     reference policy

system utilities

     modified SELinux commands

     policy module manual pages

     policy tools

     security context

     status information

System V IPC objects, 2nd
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target identifiers, allow (UL) rule,

target SIDs,

target types, allow (UL) rule,

targeted example policies, 2nd

task-based filesystems, file related object labeling,

tcp_socket object class,

tcp_socket permissions,

TE (type enforcement), 2nd

     access control

         domain transitions
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